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seen a significant success in this category providing state of the art results for problems

such as image classification and natural language processing.

Inverse modeling, is leveraging both governing equations and data to determine

unknown states. This could range from predicting values in areas wheredata is not avail-

able for example satellite imagery being blocked by clouds, or determine unknown quan-

tities such as velocity when only given temperature of a fluid. PINNs excel in both the

forward and inverse modelling.

2.1. How a PINN works

With the universal approximation theorem, neural networks have the power to approx-

imate any function [2]. As a result, researchers have turned to using networks to solve

equations where traditional methods are infeasible such as high dimensional PDEs or even

fractional PDEs [3].

However, training on data alone does not guarantee a network will learn the un-

derlying physics and correctly generalise to regions where data is sparse or unknown.To

ensure networks are learning the correct physics, the network is ’informed’ by including

the underlying equations during network training. In general, a PDE can be expressed as

[4]:

ut +N [u] = 0, x ∈ Ω, t ∈ [0, T ] (1)

where N [·] is the non linear operator over the output function u. To inform our network

of the PDE that governs the data, one treats the equation as a residual:

r = ut +N [u] (2)

which is added to the loss function and minimised at each point (x,t) via mean square

error:

Lresidual =
1

N

N
∑

i

(|r(xi, ti)|
2 (3)

Combined with appropriate boundary, initial or data which are also minimised via mean

square error, the total loss is:

Loss = Lresidual + Ldata + LBC + LIC (4)

The types and formulation of PINNs is varse and can vary considerably. However,

this report primarily focus on the above formulation where point cloud data e.g. (x, t) is

mapped to it’s corresponding output u(x, t).

For forward modeling problems the ’training’ data is a mix of boundary/initial

conditions or known data points such as from a sensor and ’collocation points’. Collo-

cation points are data points located inside the domain where there is no data but must

adhere to the equations. An example of collocation points are time points in the future.

Collocation points ensure that the system equations are being followed across the domain.

Inverse modelling is determining unknown quantities or underlying equation from

provided data. This has tremendous use in real-life applications where often some quan-

tities are well known such as temperature or concentration but desired quantities such



as velocity field or fluid properties such as viscosity are unknown. Raissi [5] showed

the power of neural networks for this problem being able to to discover the underlying

velocity by only providing the governing equations and concentration data of the flow.

PINNs have also begun to see usage outside of research interests. Nvidia Modulus

is a recent python library dedicated to solving PINNs [1]. Modulus has been successfully

used by companies such as Siemans in the optimisations of wind turbine placement [6]

2.2. Advantages of PINNs

1. Derivative can be obtained via automatic differentiation
2. PINNs are meshless method allowing querying at any point inside a domain whereas

typical CFD or FEA methods uses discretization
3. Highly parralisable and can scale well with GPUs. standard physics solvers are

sequential in nature are not as parralisable
4. Requires minimal pre-processing, as typically PINNs take point cloud data as

input
5. The method for foward modelling and inverse modelling with PINN is identical.

2.3. Disadvantages of PINNs

1. PINNs have no guarantee of convergence
2. Network architecture and size is problem dependent
3. For large spatial or large time horizons, PINNs can ’forget’ previous information.

3. Forward Modeling Example - 1D Spring Equation

Consider the following linear ODE for a mass-spring system with damping:

d2u

dt2
+

du

dt
+ 6.5t = 0, for t ∈ (0, 2π) (5)

u(0) = 0,
du

dt
(0) = 2.5 (6)

which has an analytic solution:

u(t) = e−0.5t (sin (2.5t)) (7)

However suppose one is unaware of the analytic solution and one only has data

points for 0 < t < 1 and equation 5 and one is interested in the systems behaviour for

1 < t < 2π. Then using a PINN the problem is formulated as an optimisation problem:

Loss = Lresidual + LData (8)

Lresidual =
1

N +M

N+M
∑

i

(
d2uθ

dt2
(ti)+

duθ

dt
(ti)+uθ(ti))

2, LData =
1

N

N
∑

j

(unet(tj)−u(tj))
2

(9)

Where unet(t) is the current network prediction for input t, u(t) is the true data

of u, N it the number of data points and M is the number of ’collocation points’. The

Collocation points are 20 uniformly space points between 1 < t < π. The residual

equation ’informs’ the network that these collocation points must behave according to the

the equation.







neurons per layer. Adam is the optimizer used with a learning rate of 1e-3 and a mini

batch size of 10,000 is used. Finally, 2 million random data points are used from the 9

million data points available.

The L2 relative error is used as a way to measure the relative average error of the

PINN solution. The L2 error is defined as:

L2Error =

√

||x̂− x||2

||x||2
(16)

where x̂ is the outputs of the neural network across all inputs expressed as a single

vector, x is the corresponding true values and || · || denotes the magnitude of the vector.

Figure 4. Predicted Results for PINN when given only concentration data and

equations for the flow. The first column shows the true values for the output

variables, the second column shows the predictions by the PINN and the final

column shows the absolute difference between the prediction and actual data.

The difference in pressure is not shown as they are offset by a constant

4.2.1. Results

Using only concentration data, the PINN is able to reconstruct the flow variables to a

reasonable approximation. However, the PINN fails to reconstruct the the u velocity in

front of the cylinder. This is likely due to the lack of concentration gradients in front

of the cylinder where the flow is not disturbed by anything. To circumvent one would



Table 1. relative L2 error for the scalar-advection problem

concentration u velocity v velocity

Relative

L2 Error
0.50% 22.5% 8.20%

likely need to introduce a boundary condition at the left boundary to improve the PINN

prediction.

A interesting point from figure 5 is that when the values of concentration out-

side of the range (0,1) are excluded from the contours, the network is able to determine

the boundary condition of the cylinder even though no information about the boundary

condition has been provided.

Figure 5. The cylinder can be ’discovered’ by the PINN by removing points out-

side the expected range for concentration data

4.3. Steady State 2D Boussinesq Bouyancy Approximation

The previous example was an example of one-way coupling where the fluid affected the

concentration but the concentration does not affect the flow. In this example, natural

convection due to thermal gradients are examined. As opposed to the previous problem

temperature affects the flow field and vice versa.

4.3.1. Problem Setup

In this example, a steady state differential heated cavity problem is analyzed. From Figure

6, the left wall of a 0.1 × 0.1 metre box is heated to 296K while the right wall is cooled

to 294K. The fluid inside the box is water and is initially 295K. The top and bottom walls

are thermally insulated (i.e. no heat can flow out of these walls). Each wall also obeys the

no slip condition where fluid flow is zero at the walls.

The fluid dynamics inside the box is governed by the boussinesq approximation:





4.3.2. Non-dimensionalation and scaling

Scaling outputs and inputs closer to unity or centered around zero has been shown to

greatly improve convergence and accuracy of neural networks [1] . An example outside

of PINNs is in image recognition tasks where pixel values are scaled from 0-255 to 0-1.

To ensure unit consistency, the equations themselves must also be scaled and

shifted appropriately with the aim of having outputs and inputs close to unity. To do

so one non-dimensionalises the equations. An example of this are the equations seen in

section 4.1 which have been non-dimensionalised using a length and velocity scale.

For this problem we choose a length, velocity and temperature scale L,U,∆T
respectively and non-dimensionalise in the following:

t =
t∗

L/U
, x =

x∗ − xs

L
, y =

y∗ − ys
L

(21)

u =
u∗

U
, v =

v∗

U
, p =

p∗

ρ0U2
θ =

T ∗ − T0

∆T
(22)

where the superscript ∗ is the dimensionalised parameter and subscript s repre-

sents a reference value to shift the centre value to zero. For this problem L = 0.01,

U = 1e − 3, xs = ys = 0.05 and ∆T = 1. This leads to the following non-dimensional

form of the Boussinesq equation:

u
∂u

∂x
+ v

∂u

∂y
= −

∂p

∂x
+

µ

ρ0UL
(
∂2u

∂x2
+

∂2u

∂y2
) (23)

u
∂v

∂x
+ v

∂v

∂y
= −

∂p

∂y
+

µ

ρ0UL
(
∂2v

∂x2
+

∂2v

∂y2
)−

βgl∆Tθ

U2
(24)

∇ · u⃗ = 0 (25)

u
∂θ

∂x
+ v

∂θ

∂y
=

α

UL
(
∂2θ

∂x2
+

∂2θ

∂y2
) (26)

These scaling and shifts change the domain of our problem: the origin is now

located in the centre of the box and has dimensions of 10 x 10 (ranging from -5 to 5).

Furthermore, the non-dimensional temperature θ now ranges from -1 and 1 as opposed to

294K to 296K. In a similar vein as before, Only the temperature data is provided to the

network during training and equations 23 to 26 are treated as residuals e1 to e4 respectively

in the loss function:

Loss =
4

∑

i

Lresiduali + Ldata

Loss =
4

∑

i

1

N

N
∑

j

ei(xj)
2 +

1

N

N
∑

j

θnet(xj)− θ(xj))
2

(27)



4.3.3. Training and Network

of the 40,000 training points available, only 8000 random points are used in training the

network. The batch size used is 4000. Again, the Adam optimiser scheme is used with

an initial learning rate of 1e-3. The network used is the same fully connected network as

before with sin activation functions. Finally, Ldata term is given a weighting of 20 over

the residual terms.

4.3.4. Results

Table 3. relative L2 error for the steady state boussinesq problem

Temperature u velocity v velocity

Relative L2 Error 2.57% 45.6% 38.2%

From Figure 7 one can see that the PINN primarily struggles in the regions near

the outer walls of the cavity, in particular the corners of the cavity. This is likely due to

the high gradients that occur near the walls, making convergence of the residuals difficult.

Furthermore, the no slip condition is not met on the top and bottom walls for the u velocity.

This is likley due to the lack of temperature gradients normal to the wall (note this is

actually the boundary condition of the wall when set in the CFD model) which makes it

difficult to infer the correct solution [4].

Futhermore, training of the network was difficult likely due to the loss being multi

objective. As can see in the training loss in figure 8, the loss became unstable after about

5000 epochs. To stabilise the training, the learning rate was manually decreased to 1e-4

after 15000 epochs. This required manual intervention which is not ideal. From Figure

9 the noisiest loss is clearly the residual related to equation 24. This is likely due to the

buoyancy term which contains the a temperature term.



Figure 7. Predicted velocity and temperature profile of PINN when given only

on temperature data. The PINN struggles to capture the zero velocity condition
especially on the top and bottom walls



Figure 8. Training Loss over 90,000 Epochs

Figure 9. Individual training losses for each loss term. note incompressibily loss

curve represents the continuity equation



4.4. Steady State Heated Cavity with Additional Boundary Conditions

To improve the PINN the no slip condition is introduced into the loss function:

Loss =
4

∑

i

Lresiduali + Ldata ++LBC

Loss =
4

∑

i

1

N

N
∑

j

ei(xj)
2 +

1

N

N
∑

j

θnet(xj)− θ(xj))
2 +

1

M

M
∑

k

unet(xk)
2 + vnet(xk)

2

(28)

Where xk are points located on the walls of the domain. Each wall has 250 points

that are randomly sampled every epoch. The training of the previous cavity PINN is then

finetuned to help with faster convergence. The network was then trained on an additional

3300 epochs.

4.4.1. Results

Table 4. Comparison of relative L2 error for the steady state Boussinesq problem

with and without no slip boundary conditions

Temperature u velocity v velocity

No BC 2.57% 45.6% 38.2%

With BC 3.77% 34,29% 21.2%

From Figure 10 introducing the boundary helps improve the error located near the

walls and allows the PINN to capture the no slip boundary at the top and bottom walls.

From table 4, the average relative error is significantly less when BC are introduced.

However the average error is less for the u velocity, one can see that the u velocity is

underestimating the true u velocity suggesting more training is needed.



width =

Figure 10. Results after the no slip condition is included in the loss function. the

images on the right most column are the absolute errors from the previous PINN

trained without the boundary conditions.

4.5. Transient 2D Boussinesq Flow

Finally a transient 2D Boussinesq Flow is simulated to see the feasibility. In this case the

2D model contains a heated cylinder at 315K and a cooling cylinder at a constant 285K

with the surrounding air at an initial temperature of 300K.

The governing equations are now the transient Boussinesq approximations:

t =
t∗

L/U
, x =

x∗

L
, y =

y∗

L
(29)

u =
u∗

U
, v =

v∗

U
, p =

p∗

ρ0U2
, θ =

T ∗ − T0

∆T
(30)

∂u

∂t
+ u

∂u

∂x
+ v

∂u

∂y
= −

∂p

∂x
+

µ

ρ0UL
(
∂2u

∂x2
+

∂2u

∂y2
) (31)

∂v

∂t
+ u

∂v

∂x
+ v

∂v

∂y
= −

∂p

∂y
+

µ

ρ0UL
(
∂2v

∂x2
+

∂2v

∂y2
)−

βgl∆Tθ

U2
(32)

∇ · u⃗ = 0 (33)

∂θ

∂t
+ u

∂θ

∂x
+ v

∂θ

∂y
=

α

UL
(
∂2θ

∂x2
+

∂2θ

∂y2
) (34)





Table 6. relative L2 error for the transient boussinesq problem

Temperature u velocity v velocity

Relative

L2 Error
7.87% 60.58% 38.42%

4.6. Results

From the training curve in Figure 13 show sporadic spikes at epochs 1300 and 2900.

The first spike at epoch 1300 was a change in weighting and accidental overwrite and

overwrite of the best running loss. The second spike was due to a change in weighing.

The weighing for the temperature transport residual was set to 10 while the temperature

fitting loss remained at a weighting of 20. Due to time constraints only 10,000 epochs

were run. Due to time constraints, the run was prematurely ended. More training time

would be needed to improve accuracy.

In a similar vein to section 4.1, the PINN is able to start to infer the boundary of

the 2 cylinders as seen in Figure 15. More training would likely be needed

width =

Figure 12. Results for the transient case. More training is likely needed to achieve

better accuracy







perform better than the fully connected network [8]. The networks used in this research

were either the resiudal like network or the fully connected network.

For activation functions, it was observed that ϕ = sin(x) performed significantly

better than standard activation functions such as tanh or the sigmoid function.

5.2. Weighing of Loss functions

For PINNs the resiudals create a multi-objective loss function. This can make is difficult

to achieve convergence as the network may prefer to decrease the loss of one objective

than another. Generally speaking, data fitting terms (including boundary conditions and

initial conditions) should be weighted higher than residual loss terms [9][10]. A sig-

nificant amount of research into PINNs attempts to tackle this problem to automatically

weight these objectives to have approximately the same gradient magnitude. The two

weighting methods attempted were the weighting via Neural Tangent Kernels and learn-

ing rate annealing [10][9] strategies. However, implementing both weighting systems

failed. Correctly weighting the different objectives has been shown to significantly im-

prove convergence [10][9]. From this project, weighting the data term higher has been

beneficial in improving convergence.

Secondly one can also have spatial weighting of the residuals terms in the loss

functions. Areas of high gradients such as near a wall or discontinuities, can often be

source of convergence issues. Decreasing the weight of residuals near walls might have

helped improved convergence.

6. Future areas to investigate

6.1. Exact Continuity for Navier-Stokes

In 2D, one can automatically satisfy the continuity equation ∇ · u⃗ = 0 for incompressible

fluid flow by defining the velocity as the derivatives of a scalar potential ϕ known as the

stream function [9]:

u =
∂ϕ

∂y
, u = −

∂ϕ

∂x
(35)

In this case, the network would output the stream function ϕ and pressure. Ve-

locity would then be recovered by taking the appropriate gradient of ϕ. This formulation

ensures the continuity equation is satisfied and removes simplifies the multi-objective loss

function. Reducing the objective function should help improve convergence [9]. How-

ever, the trade-off is that the Navier stokes equations become third order PDEs increasing

computation complexity.

6.2. Using 2 networks

For inverse modelling if one has data that covers the domain, such as the examples this

project examined, one could split up the training into to 2 networks. The first network

learns to predict the scalar (e.g. temperature) field and its derivatives while the second

network uses the derivatives of the first network to determine the other hidden variables.

Taking the steady state natural convection problem in section 4.3 as an example,

one first trains a network to learn the temperature field θ(x, y) through standard mean

square error fitting. At high convergence, this network gives us the temperature and the





such as temperature or concentration. PINNs are able leverage both the governing equa-

tions and data where traditional numerical simulations or a purely data-driven approach

fails. Using only thermal data, one could reasonably recover the velocity variables from

incompressible flow drive by thermal gradients in both steady state and transient settings.

From a numerical simulation point of view, one would still consider the error rate in these

PINNs to be too high to be considered converged. The methods implemented during the

project were a somewhat brute force approach with many instances of manual tuning and

intervention. Convergence of the loss functions remains a difficult problem that would

need to be explored further.
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