
Adapters in Low-Precision Neural

Networks

John Su

A Capstone Project for the degree of

Master of Engineering in Intelligent Information

School of Electrical and Information Engineering

University of Sydney

Australia

25th May 2023

1

Abstract

On the extreme end of low precision neural networks are binary neural networks (BNN),

where weights and activations are quantized to 1 and -1. BNNs have the potential to run

deep networks on dramatically reduced hardware. However, BNNs often need special train-

ing methods making transfer learning difficult. Furthermore, it is cumbersome to require

multiple versions of the same networks for different domains. To alleviate this, adapters are

investigated as a solution to this problem.

Adapters inject additional parameters into the network and are a fraction of the size of the

base network. During finetuning, the weights in the BNN are kept frozen and the adapters are

trained to repurpose the BNN to the new domain. This eliminates the need to have multiple

copies of the same deep network. Instead, adapters can be swapped out to repurpose the base

network to a new domain. Because of their smaller memory footprint, multiple adapters can

be stored for the same cost as a single deep network to cover multiple tasks.

In this project, three points are examined; the effectiveness of adapters compared to

standard transfer learning methods, the training time and finally the size of an adapter needed

to maintain high accuracy. Both a serial and parallel adapter approach were considered.

Convolutional based BNNs are examined with the task being focused on image classification.

Using pruning and grouped convolutions to reduce weights, experiments indicate that

adapters that are between 7-12% of the memory size of the base BNN provide a good

compromise between accuracy and low memory footprint. Accuracy of BNNs are only a

few percentage points off standard transfer learning methods while providing faster training

times and flexibility in design approach. This project opens a path to implementing deep

networks on low end hardware via BNNs with adapters being used to tailor the network to

the specific task.

3

Acknowledgement

I would like to thank my supervisor Dr. David Boland for the tremendous amount of help

and guidance during this project. Dr. Boland ensured that the project goals were not too

ambitious and provided helpful comments of which direction to take the project.

I would like to also thank my Uncle and Aunt who provided housing and support when

first arriving in Sydney, allowing me to focus on my studies.

4

Contents

1 Introduction 14

1.1 Motivation . 15

1.1.1 Emerging Trends . 15

1.1.2 Advantages of Binary Operations 15

1.1.3 Advantages of Adapters . 15

1.2 Research Questions . 17

2 Statement Of Achievements 18

3 Background 20

3.1 Image Classification . 20

3.1.1 Cifar-10 and Cifar-100 Dataset . 20

3.2 Properties of Neural Networks . 21

3.2.1 Neural Networks are Universal Approximators 21

3.2.2 Training Neural Networks . 21

3.2.3 Feed-forward Algorithm . 22

3.2.4 Objective Function . 23

3.2.5 Backpropagation Algorithm . 24

3.3 Neural Network Architectures . 24

3.3.1 Activation Functions . 24

3.3.1.1 Sigmoid Function . 24

3.3.1.2 ReLu Function . 25

3.3.2 2D Convolutional Neural Networks (CNNs) 26

3.3.3 Batch Normalisation . 28

3.3.4 Residual Connections . 28

3.4 Network Optimisation . 29

3.4.1 Integer Quantisation . 29

3.4.2 Binary Neural Networks (BNNs) 30

3.4.3 Network Pruning . 30

3.4.3.1 Unstructured Pruning 31

3.4.3.2 Structured Pruning . 31

5

3.4.3.3 Lottery Ticket Hypothesis 31

3.5 Transfer Learning . 31

3.5.1 Adaptive Layers . 32

4 Literature Review 34

4.1 Binary Network Architecture . 34

4.1.1 Straight Through Estimator (STE) BNN 34

4.1.2 ReAct Net . 34

4.1.2.1 Weight Binarisation . 35

4.1.2.2 Activation Function . 36

4.1.2.3 Denser Network . 37

4.1.2.4 Training Procedure . 37

4.2 Adapter Methods For CNNs . 38

4.2.1 Serial Adapters . 38

4.2.2 Unidirectional (parallel) Adapter 39

5 Methodology 41

5.1 Overview . 41

5.2 Comparing size of adapters to base network 41

5.3 Base Binary Network . 42

5.3.1 STE BNN . 42

5.3.2 ReactNet . 43

5.4 Adapters . 44

5.4.1 Serial Adapter Design . 45

5.4.2 Parallel Adapter Design . 46

5.5 Reducing Adapter Parameters . 47

5.5.1 Grouped Convolution . 47

5.5.2 Pruning . 48

5.5.2.1 Pruning Strategy . 49

5.6 Benchmarks . 50

5.6.1 Cifar5-5 and Cifar80-20 . 50

5.6.2 Flowers102 and Oxford Pets Dataset 51

5.7 Training Procedures . 52

5.7.1 Cifar 5-5 and Cifar 80-20 . 52

5.7.1.1 Data Augmentation . 52

5.7.1.2 Hyperparameters . 53

5.7.1.3 Finetuning Procedures 53

5.7.1.4 Cifar 5-5 Experiments 53

5.7.1.5 Cifar 80-20 Experiments 53

5.7.2 OxfordPets and Flowers102 Dataset 54

5.7.2.1 Data Augmentation . 54

6

5.7.2.2 Hyperparameters . 54

5.7.2.3 Finetuning Procedures 54

5.8 Summary of Methodology . 55

6 Results and Discussion 56

6.1 Cifar5-5 Benchmark . 56

6.1.1 Initial Training . 56

6.1.2 Serial Adapter . 56

6.1.3 Discussion . 56

6.2 Cifar 80-20 . 59

6.2.1 Serial Adapter . 59

6.2.2 UDTA Adapter . 59

6.2.2.1 Pruning Results . 59

6.2.2.2 Grouped Convolution 59

6.2.3 Discussion . 59

6.3 Flowers 102 Dataset . 61

6.3.1 Discussion . 61

6.4 Oxford Pets 102 Dataset . 63

7 Future Work and Improvement 65

7.1 Finetuning Methods . 65

7.1.1 Adapter Architecture . 65

7.1.2 LoRA . 65

7.2 Reducing Computing Resources . 66

7.2.1 Quantization . 66

7.2.2 Pruning . 66

7.3 On Device Training . 67

8 Conclusion 68

8.1 Learned Practices . 69

8.2 Limitations of study . 69

8.3 Future Directions . 69

Bibliography 70

9 Appendix 75

9.1 Base Networks . 75

9.1.1 STE BNN . 75

9.1.2 ReAct Resnet18 . 77

9.2 Adapters . 81

9.2.1 Serial Adapters . 81

9.2.2 Parallel Thinblock Adapters . 82

7

9.2.2.1 STE BNN UDTA Adapter 82

9.2.2.2 ReActUDTA Adapter 82

9.3 Custom Benchmarks . 83

9.3.1 Cifar5-5 . 83

9.3.1.1 Intial Training Dataset 83

9.3.1.2 Target Dataset . 84

9.3.2 Cifar80-20 . 84

9.3.2.1 Initial Training Dataset 84

9.3.2.2 Target Dataset . 86

8

List of Figures

1.1 Sample of state of the art models in image classification over time in Ima-

geNet classification source [12, 14, 15, 16, 17, 18] 16

1.2 XNOR Multiplication and Bitcounting . 16

1.3 How Adapter Work . 17

3.1 Cifar10 Dataset . 21

3.2 Cross Entropy Loss . 23

3.3 Sigmoid Function maps the Real Line to [0,1] 25

3.4 ReLu function. The function can also be expressed as max(x,0) 25

3.5 Visualisation of a CNN . 27

3.6 Translational Invariance Example . 27

3.7 Skip Connection Example . 29

3.8 Hard tanH function and its derivative . 30

3.9 Adapter vs Standard Finetuning in NLP 32

3.10 Autoencoder design of adapters used in NLP [21]. 33

4.1 Hard tanH function and its derivative . 35

4.2 STE Illustration . 35

4.3 Distribution Shift Importance with BNNs 36

4.4 Visualisation of the new activation functions introduced for ReAct Net and

the effect of each parameter [4] . 37

4.5 Serial Adapter used in this project [5]. The input shape of the Adapter must

match the output shape . 38

4.6 UDTA Adapter structure . 39

5.1 Binary Resnet18 Network from [1] . 43

5.2 ReAct Net Archetecture . 44

5.3 Serial Vs Parallel Adapters . 45

5.4 Serial Adapter used in this project [5] . 45

5.5 UDTA Approach Used In Project . 46

5.6 Comparison between UDTA (Parallel) Designs 47

5.7 Weights in Grouped 2D Convolution vs Standard 2D Convolution 48

5.8 Pruning in Pytorch . 49

9

5.9 How pruned layers can be truly implemented 50

5.10 Splitting Cifar10 into 2 Datasets . 51

5.11 Example images from flower102 and Oxford Pets dataset 52

5.12 Using the UDTA Head Only . 55

6.1 Training Loss Results For Finetuning on Cifar5-5 Target Dataset 57

6.2 Test Accuracy Results For Finetuning on Cifar5-5 Target Dataset 58

6.3 Comparison of accuracy based on different adapter strategies on Cifar80-20

benchmark . 61

6.4 Plot of Test Accuracy and Training Loss for Cifar80-20 Benchmark 62

6.5 Sample plot of various finetuning runs over Flower102 dataset 63

6.6 Sample plot of various finetuning runs over OxfordPets dataset [25] 64

10

List of Tables

4.1 BNN Top 1% Accuracy Comparison . 35

5.1 STE BNN Memory Footprint Comparison 42

5.2 Memory Comparison of parameters between ReAct Resnet18 and Resnet18 43

5.3 Comparison between thinblock adapter designs 46

5.4 Dataset Information for flower102 and Oxford Pets dataset 51

5.5 Cifar5-5 and Cifar80-20 Data Augmentations 52

5.6 Data Augmentation for Training On Pets and Flower Dataset 54

5.7 Summary of training procedures investigated in this project 55

6.1 Initial Base BNN Training Results . 56

6.2 Table of results for Cifar5-5 Benchmark 57

6.3 Top 1% Accuracy and Number of weights introduced for the serial adapter

approach . 59

6.4 UDTA Adapter Results with Pruning for Cifar80-20 Benchmark 59

6.5 UDTA Adapter Results with Grouped Convolution for Cifar80-20 Benchmark 60

6.6 Flowers102 Finetuning Results and the effect of using Pruning and Only

using adapter network for output . 62

6.7 OxfordPets Finetuning Results and the effect of using Pruning and Only

using adapter network for output . 64

9.1 Summary Of Network Structure for STE BNN. 75

9.1 Summary Of Network Structure for STE BNN. 76

9.1 Summary Of Network Structure for STE BNN. 77

9.2 Weights and Summary of ReactNet used. The layers are ordered from input -

output layer order . 77

9.2 Weights and Summary of ReactNet used. The layers are ordered from input -

output layer order . 78

9.2 Weights and Summary of ReactNet used. The layers are ordered from input -

output layer order . 79

9.2 Weights and Summary of ReactNet used. The layers are ordered from input -

output layer order . 80

11

9.2 Weights and Summary of ReactNet used. The layers are ordered from input -

output layer order . 81

9.3 Summary of Adapter Architect for serial adapters 81

9.3 Summary of Adapter Architect for serial adapters 82

9.4 Network Summary of Custom thinblock adapter before Pruning or grouped

convolutions For STE BNN . 82

9.5 Network Summary of Custom thinblock adapter before Pruning or grouped

convolutions . 83

9.6 Cifar5-5 Initial Dataset STE BNN is trained on. 84

9.7 Cifar5-5 Target Dataset STE BNN is Finetuned on. 84

9.8 Cifar80 Intitial Dataset STE BNN is trained on. 84

9.9 Cifar20 Target Dataset STE BNN is finetuned on. 86

12

Glossary

Cin Number of input channels. 47

Cout Number of output channels. 47

BNN Binary Neural Network. 3, 5, 6, 14–18, 30, 34, 35, 37, 39, 41–44, 46, 47, 50, 52–54,

68, 69

CNN Convolutional Neural Network. 9, 26, 27, 33, 34, 36, 38, 49, 68, 69

LLM Large Language Model. 65, 66

NLP Natural Language Processing. 9, 32, 33, 65

SOTA State of the Art. 65

STE Straight Through Estimator. 6, 7, 34, 42, 43, 50, 75

UDTA Unidirectional Thin Adapter. 8, 9, 39, 46, 53–55, 69, 82

13

Chapter 1

Introduction

Low precision neural networks have seen increased attention in recent years as a promising

method to reduce the computation resources required to run networks. Standard neural

networks typically perform computations using 32 bit floating point operations which are

relatively expensive and resource heavy compared to their integer arithmetic counterparts.

Researchers have demonstrated that networks that are quantized (converted from floating

point to integer based arithmetic) can achieve similar results to their floating point counter-

parts. On the extreme end of this quantisation are neural networks where paramaters and

activations are quantised to a single bit representing 1 or -1 [1]. These so called binary

neural networks have attracted interest as they have the potential to run deep networks using

significantly less power and hardware requirements than standard neural networks while still

achieving high accuracy [2].

However, methods to train BNNs tend to be more time consuming and difficult to train

than their equivalent floating point 32 network [3, 4, 1]. This also makes the task of transfer

learning i.e. retraining the whole model to a new domain e.g. birds species not seen in the

original training set equally challenging. Furthermore, fine tuning the entire model for every

new domain, is inefficient as an entirely new model must be stored for every different domain.

Instead of retraining the entire model, adapter networks, small networks injected into the

BNN are trained to learn the domain specific features while keeping the original model

parameters fixed. Previously used for natural language processing (NLP), adapters have also

been successfully applied to convolutional neural networks and image classification with

multiple strategies being proposed [5, 6].

This Capstone project investigates the combination of binary neural networks and

adapters as an effective strategy to help overcome shortcomings of binary networks, in

particular binary convolutional neural networks, in the task of image classification.

14

1.1 Motivation

1.1.1 Emerging Trends

Neural networks have seen tremendous growth in recent years in tasks ranging from computer

vision and classification to natural language processing. Although the neural network’s ability

as a universal approximator was known in the early 1990’s [7], popularity in neural networks

occurred recently in a large part to the exponential increase in computing power and data.

This has led to neural networks achieving state of art performances in a wide range of

domains ranging from image classification to natural language processing (NLP) to even the

games of Chess and Go [8][9]. However, many of state of the art models such as ChatGPT

for NLP, require tremendous amounts of computing resources and power with the estimated

number parameters being in the hundreds of billions [10, 11, 8]. Even in image classification,

models can easily exceed over 1 billion parameters [12] necessitating the use of cloud

compute just for inference due to the sheer number of parameters. This can make the usage

of neural networks difficult in areas where cloud usage is not feasible or accessible or in

tasks where response time is critical such as autonomous vehicles.

On the other hand, the number of edge devices such as phones, internet-of-things (IOT)

devices and embedded hardware has also seen a similar rise in usage as the world becomes

more connected and electrified [13]. However, the lower computational power and resources

edge devices have often limit their ability to leverage state of the art neural networks.

This discrepancy between the trend of neural networks becoming larger and requiring

larger amounts of computational resources and the increase in edge devices has created a

large interest from researcher in the attempt to bridge this gap. To bridge this gap, researchers

have focused on both the hardware end as well as the software end (network architecture,

compiler optimisations).

1.1.2 Advantages of Binary Operations

BNNs are particularly attractive due to binary operations being both computationally and

memory efficient. In terms of memory, binary weights can theortically be 32x more efficient

than regular 32-bit floating point [1, 19]. Furthermore, with weights and activation’s being 1

or -1, the operation of multiplication reduces to performing an XNOR operation between

two binary variables and summation reduces to bitcouning [20]. As neural networks are

comprised entirely of multiplication and summation, BNNs can theoretically operate on

minimal hardware and memory.

1.1.3 Advantages of Adapters

BNNs are difficult to train as the quantisation operation (in this case the sign function)

derivative is zero everywhere except at zero. As such numerous training methods have been

15

Chapter 2

Statement Of Achievements

During this capstone project, the following achievements were made:

• Using adapter finetuning, results in image classification were within a few percentage

points off the accuracy of regular finetuning methods while only introducing 8-12% of

weights relative to the memory size of the base network. This 8-12% represents a good

compromise between accuracy and weight efficiency. As the base network is binary,

these adapters are on the order of only a few kB.

• Adapters benefit from increased training speed when used as a method of finetuning vs

standard methods. Adapter training can be upto 1.4x faster per epoch, and also reach

higher accuracy faster in the initial few epochs than standard methods

• Creation of custom benchmark from Cifar10 and Cifar100 datasets to allow rapid

prototyping. These two datasets were each split into 2 subsets; one for training the

initial network and the second subset to use as the benchmark for transfer learning.

• Consideration that 32-bit floating point weights are 32x larger than binary weights.

This means adapters in this project were made significantly smaller and more compact

to ensure the total adapter memory is also a fraction of the base BNN memory.

• Grouped convolution and pruning are both effective methods for reducing the weights

in adapters. Grouped convolution is easier to implement but has a limit as to the

number of weights to implement. Pruning does not have this limit, but requires an

initial overparametization to maintain high accuracy after pruning.

• Based on the benchmarks used, the accuracy of adapters is not strongly dependent on

the adapter strategy. The most important factor in accuracy is the number of weights

introduced by the adapter.

• Analysis of the strengths and limitations of serial and parallel adapter strategies. Serial

approaches are straight forward and quick to implement however require backpropoag-

tion throught the entire base network. Parallel approaches can completely bypass

18

backpropagation through the base network but requires modification to the underlying

network code to implement.

• Use of the following datasets to demonstrate the effectiveness of adapter finetuning:

– Cifar10 and Cifar100 [23]

– Flower102 Dataset [24]

– Oxford Pets Dataset [25]

• Development of Python code using Pytorch 1.13 [26] that would allow future re-

searchers to implement adapter finetuning for different image classification tasks. For

data management, Weights and Biases platform is used [27]. The code can be found

here: https://github.com/Johnnny-suu/Adapters_BNNs

19

https://github.com/Johnnny-suu/Adapters_BNNs

Chapter 3

Background

3.1 Image Classification

Image classification is a subdomain of computer vision aimed at identifying objects in images.

Given an input image with some class e.g. a dog, the objective is correctly identify or ’label’

the image as containing a dog. Prior to 2012, non neural networks were used such as support

vector machines (SVM) combined with hand crafted feature extraction. Top error rates for the

ImageNet Large Scale Visual Recognition Challenge (ILSVRC) hovered around 25% with

these methods [28]. In 2012, AlexNet achieved an error rate of 16% for the ImageNet dataset

using neural network networks instead of traditional machine learning methods[18]. Since

then, neural networks continued to beat out traditional methods in image classification. As of

2022, neural networks now dominate the image classification tasks with current methods

achieving 90% in the ImageNet dataset [14, 12].

3.1.1 Cifar-10 and Cifar-100 Dataset

The Cifar-10 dataset contains 60,000 (50,000 training images and 10,000 testing images)

32x32 coloured images each labeled with one of 10 classes. Cifar-10 is a labeled subset of the

80 million tiny images dataset [23]. The Cifar-10 dataset has become a popular benchmark for

image classification as the small image size and large amount of labeled data (5,000 images

per class) allows researchers to quickly prototype and test different network architectures. It

is currently one of the most used image classification benchmarks with over 9000 citations.

[12].

20

acts as a measure of how well the network is performing the task such as cross-entropy

for image classification. For most tasks, supervised training is used whereby the training

data is pre-labeled with the correct answer. Three stages of training: the feed-forward stage

where data is passed through the network, the calculation of some objective function and

finally back-propagation of the objective function. The back-propagation algorithm adjusts

the parameters of the model slightly to minimise the objective function. This process is

repeated to iteratively fit the network to the training data [30, 31].

3.2.3 Feed-forward Algorithm

Neural networks were initially inspired by biological neural networks and are often referred

to as artificial neural networks [32]. The basic building block of a neural network is the

neuron. The neuron take in a weighted sum of inputs and a bias then passes the sum through

some non-linear activation function such as the sigmoid or ReLu function. Mathematically

for a vector of inputs x = [x1,x2, ...,xn] the output f (x):

f (x) = σ(
n

∑
i=1

wixi +b) , f or xi, wi, b ∈ R

where σ is the activation function such as sigmoid or ReLu, wi is the weighting for input

xi and b is the bias [30]. For multiple neurons in the same layer, calculating each output

activation can be represented as matrix multiplication. Mathematically, with n input variables

and m output activations:

f (x) = σ(Wx+
−→
b) , f or x ∈ R

n,
−→
b ∈ R

m,W ∈ R
m ×R

n

Where W is the weight matrix where each row corresponds to the weights of each input

for an individual perceptron and
−→
b is the bias vector representing the bias of each perceptron.

The matrix multiplication produces a output vector of size m. The activation function is then

applied element wise [30]. This design is highly flexible and a networks width and depth can

be varied throughout the network. The final layer of the network corresponds to the task the

network is trying to fit to [30]. In the context of image classification, the final layer is often a

fully connected linear layer with a number of output neurons equal to the number of classes

to predict. The output neuron with the largest activation is considered the classification of

the image by the network.

Matrix Multiplication is highly parallel making GPU’s exceptionally well-suited to

running neural networks. GPU accelerated training of neural networks were popularized

by AlexNet and have what allowed training neural networks to scale to the size that is seen

today [18].

22

3.2.5 Backpropagation Algorithm

First introduced in 1986, the backpropagation algorithm provides the foundation for training

neural networks [34]. Once the objective function for a batch of data has been calculated, the

parameters of the network, θt , can be updated using a gradient descent policy [34, 35]:

θt+1 = θt −
µ

N∑
x

∂

∂θi

ℓob j(θt ,x,o) (3.3)

Where µ is the learning rate, N is the number of images in the dataset or batch. However,

most datasets are large and so updating weights every batch is often too inefficient. However

updating the parameters at every training data can produce noisy gradients and the network

may struggle to converge [30]. As such, most optimisers today employ the well-know

stochastic gradient descent (SGD) as a middle ground between the two [31]. Instead of

updating every batch or image, SGD updates the parameters over a small subset of the dataset

called a mini batch of size m [31].

θt+1 = θt −
µ

m∑
x

∂

∂θt

ℓob j(θt ,x,o) (3.4)

Typically batch sizes of powers of 2 such as 32 and 64 are used to take advantage of

hardware architecture [36]. The training data is shuffled before every epoch to produce

different gradients. To calculate the partial derivatives of network parameters neural networks

use automatic differentiation. Automatic differentiation utilizes the chain rule and takes

advantage of how the derivatives of function’s in a neural network are well defined [34].

3.3 Neural Network Architectures

3.3.1 Activation Functions

3.3.1.1 Sigmoid Function

The sigmoid function is a bounded function that maps the R→ [0,1]. Mathematically the

sigmoid function and derivative can be expressed as:

σ(x) =
1

1+ e−x
f or x ∈ R (3.5)

d

dx
σ(x) = σ(x)(1−σ(x)) f or x ∈ R (3.6)

The sigmoid function can be thought of as a softened and continuous version of the step

function. Sigmoid functions suffers from the vanishing gradient problem as gradients for

inputs far from the origin saturate to zero. This can make deep networks difficult to train

especially for earlier layers [37].

24

ReLu(x) =

x, if x ≥ 1

0, otherwise
(3.7)

d

dx
(ReLu(x)) =

1, if x ≥ 1

0, otherwise
(3.8)

ReLu function has become popular as it avoids the saturation of gradients that bounded

functions such as the sigmoid face and is computationally efficient to compute as the function

and its derivative can be implemented as an if statement whereas sigmoid and tanh functions

require calculation of the exponential function. However due to the zeroing of negative values

and gradient, using ReLu activation functions can result in ’dead’ neurons where gradients

cannot be propagated through the neuron due to its negative activation [38]. This issue can be

some what addressed with batch normalization. [39] Similar to the feed forward algorithm,

back-propagation can be implemented in a parallel fashion allowing for accelerated training

when using a GPU.

3.3.2 2D Convolutional Neural Networks (CNNs)

2D Covolutional networks have seen significant success in computer vision tasks such as

image classification and object detection. Many popular networks such as ResNet,VGG

and Yolo implement CNN layers [16, 17, 40]. CNNs were first introduced by LeCun et al.

in 1995 [41]. Given a Cin ×W ×H Tensor (e.g. an RGB image of size W ×H) and output

Cout ×Wout ×Hout kernel k, each output channel j can be expressed as:

C
j
out = b

j
out +

Cin−1

∑
0

W j(k)⋆ input(k) (3.9)

Where ⋆ is the cross correlation operation. Visually, convolution can be seen as a weight

matrix with kernel size k matrix multiplying a patch of the same size as the weight matrix is

moved across the grid [42].

The weight matrix can also be thought of as filters that with training, extract useful

features from the image such as edges or details such as eyes. Work by Zeiler et al. showed

that convolution weights act as filters to extract useful information [43]. Early CNN layers

detect basic features such as edges and curves while deeper CNN layers detect more task

dependent features such as eyes or head shape [43].

CNNs provide many advantages over regular full connected layers. Firstly, CNN’s are

computationally cheaper than fully connected layers. For example, for a fully connected layer

with an input image of size |x| and to an output size of |y|, would require |x|×|y| connections.

This can make even small 3x32x32 images (such as those from cifar10 [23]) infeasible as

the number of weights would be 3072|y|. Conversely, for a convolutions layer the number

of weights is independent of the input and only depends on the kernel size (typically 3x3)

26

3.3.3 Batch Normalisation

Batch normalisation was introduced in 2015 by Ioffe and Szegedy [39]. Batch normalisation

normalises activation’s from a layer to approximately have mean 0 and standard deviation 1.

Supposing an batch size of m, activations passing through a batch normalisation layer are

scaled and shifted by the mean and standard deviation across the batch:

x̂ =
x−E(x)
√

Var(x)
(3.10)

Where the expectation and standard deviation are calculated across the batch of training data.

E(x) =
1

m

m

∑
i

x,
√

Var(x) =

√

∑
m
i (x−E(x))2

m
(3.11)

Finally, the output y is calculated by scaling a shifting the normalised values:

y = γ x̂+β (3.12)

where γ and β are learnable parameters. These introduced parameters allow the network to

recover the original activation x if the batch normalisation does not help by setting γ = E(x)

and β =
√

Var(x). A running average mean and standard deviation is also stored which is

then used as the statistics during model evaluations [39].

Batch normalisation help keep activation magnitude near zero and allow for improved

training. During training, batch normalisation also act as a regularizer due to the changing

statistics across different batches helping to reduce overfitting [39].

3.3.4 Residual Connections

Residual connections were introduced in the seminal paper by He et al.[16]. Figure 3.7

shows how residual connections allows activation’s to ’skip’ layers allowing information of

early layers to propagate to deeper parts of the network. Before residual connections were

introduced, deep networks would experience the degradation problem where adding layers

to a network would actually increase training error [16]. The theory from He et al. is that the

non-linear mapping or residual (the layers in seen in Figure 3.7 is easier to learn with the

skip connection as worst case the residual can be driven to zero and the identity input can

propagate [16].

For an input x, a residual block can be expressed as some non-linear operation F(x) i.e.

the layers seen in Figure 3.7:

H(x) = F(x)+ x (3.13)

Note that the output H(x) must be the same shape as the input x. Introducing these skip con-

nections allowed He et al. to successfully train deep networks, and winning ImageNet 2015.

Furthermore, skip connections are computationally effiecient as no additional parameters are

introduced in the model. Skip connections architectures form the basis of adapters [21].

28

be pruned/removed without affecting test accuracy [48]. Pruning strategies can range from

being completely random to a global strategy where the smallest p% of weights are removed.

By pruning the network of unnecessary weights, the resulting network can be smaller

and be made to faster allowing networks to be better deployed on lower end hardware.

3.4.3.1 Unstructured Pruning

Unstructured pruning strategies ignore the structure of the layers to be pruned. For example,

unstructured pruning treats all parameters in a 2D convolutional layer as ’equal’ and so each

filter would have different number of parameters removed. This pruning technique does not

necessarily reduce memory requirements (one must still retain the entire filter) but does make

the computation sparser. Sparse tensor computations have the potential to be optimised in

the future [48]

3.4.3.2 Structured Pruning

Structured pruning strategies considers the architecture of the layer being pruned. For

example, for a 2D convolutional layer, structured pruning can be performed on the by

analysing the ’size’ of each filter i.e. the smallest filter is pruned. Structured pruning allows

for optimisations in both memory and inference as the pruned structure such as a filter can

be removed instead of simply setting the weights to zero. The L1 norm is a common criteria

to measure the magnitude of a filter:

||A||1 =
n

∑
i

m

∑
j

|ai j| (3.15)

3.4.3.3 Lottery Ticket Hypothesis

Pruning a netowrk while still retaining high accuracy suggests that the initial network is over

parameterised. However, if one starts instead with an untrained network with equivalent size

and structure to the pruned network often leads to difficulty in convergence and training

[48]. As such, one often finds it is better to train the initial over-parameterised network

and then prune the network to the desired size. The conjecture behind this is known as

the Lottery Ticket Hypothesis which suggests the success of pruning is due to the initial

over-parametized network having a higher chance of initialising a smaller sub networks that

when trained by itself, can reach equal accuracy to the full network.

3.5 Transfer Learning

Transfer learning is apply a pretrained network to a new domain task. An example of transfer

learning is using a model such as Resnet-18 to classify images that the model was not initially

trained on such as bird species. Using a pretrained network allows one to leverage the existing

31

Chapter 4

Literature Review

4.1 Binary Network Architecture

4.1.1 Straight Through Estimator (STE) BNN

The ’standard’ or base BNN used in this project is provided by [1]. The BNN used is a CNN

resnet like network as seen in figure 5.1. To train the BNN, the state-through-estimator (STE)

is used. During the forward pass, the weights and activations are binarized to 1 or -1 using

the sign function. However, during backpropagation, the real valued weights are updated as

seen in figure 4.2. This is equivalent to applying an element-wise function G to the weights

during the forward pass (in this case the sign function) and treating the derivative of this

function equal to 1 everywhere [52].

Wb = G(Wr) = Sign(Wr), where
dG

dWr

= 1 (4.1)

To ensure stable gradient Courbariaux et al also multiplied the gradient by the indicator

function:

gr = gq ×1|r|≤1 (4.2)

Where gq is the gradient obtained by backpropagation and 1|r|≤1 is the indicator function

that is equal 1 if the magnitude of the weight is less than 1 and 0 otherwise. As seen in

Figure 4.1, the indicator function is the gradient to a hardtanh function and so is equivalent

to applying a hardtanh non-linearity directly after an output of a binary layer.

4.1.2 ReAct Net

Due to the difficulty and destructive quantisation of BNNs, multiple strategies have been

proposed in training BNN [1, 20, 52, 4]. A promising recent method is the ReActNet

proposed by Lie et al [4]. Using their methods, Liu et al achieved top 1$ accuracy of 65.4%

for their binarised Resnet 18 models without introducing a significant amount of additional

parameters unlike the base BNN [4]. For comparison, the regular Resnet18 model achieves a

34

Figure 4.4: Visualisation of the new activation functions introduced for ReAct Net and the

effect of each parameter [4]

RPReLU(xi) =

xi − γi +ζi if xi ≥ γi

βi(xi − γi)+ζi, otherwise

Here βi functions the same as in the original PreLU function while γi and ζi controls the

shift of the activation function.

4.1.2.3 Denser Network

A small changed introduced by [52] is to increase the number of skip connections in each

residual block. In standard Resnet architecture, each block contains 2 layers of convolutions

before being recombined with the original input via a skip connection. However because

binary convolution is inherently destructive, [52] applied a skip connection after every

convolution to limit this loss of information without introducing additional memory overhead.

4.1.2.4 Training Procedure

Finally, BiReAct net uses a 2 step training procedure for training the binary neural network

based on the work of [3]. In the first step the network is trained with binary activation but

normal convolutional layers containing real valued weights. The initial training serves as

a good weight initialisation for fullBNNs [3]. The convolution layers are then converted

into the binary convolution layers and the network is now trained as a fullBNN. Using this

method [3] were able to train binary networks within 3-5% accuracy point of their fp32

couterpart.

37

4.2 Adapter Methods For CNNs

Houlsby et al. first demonstrated the use of adapters this in the domain of NLP for large

transformer based networks [21]. By using an autoencoder like structure with a skip con-

nection type adapter, Houlsby et al. showed that BERT NLP model could be finetuned to

downstream tasks with only 0.4% decrease in accuracy compared to full finetuning [21].

The use of adapters has since been extended to CNN style architectures. Rebuffi et al. was

the first to use this approach using a serial adapter approach with resnet like adapter [5].

Since then, other adapter variations for CNN networks have appeared to improve adapter

approaches for multitask learning [6, 53, 54].

4.2.1 Serial Adapters

A serial adapter approach injects parameter specific between layers of the existing ’backbone’

network. This approach can be implemented with minimal changes to the underlying network

code. Rebuffi et al used adapters to achieve comparable transfer learning accuracy compared

to standard finetuning where all network parameters are retrained [5]. Using ResNet as the

base network, Rebuffi et al’s adapters followed a similar resnet like architecture as seen in

figure 5.4. To reduce the amount of parameters introduced, Rebuffi used a 1x1 kernel. In

this project, the same adapter is used for serial adapters but the final layer is replaced by a

hardtanh function (to ensure input values to binary convolutions are between 1 and -1) 5.4.

Figure 4.5: Serial Adapter used in this project [5]. The input shape of the Adapter must

match the output shape

Because adapters in serial are added between existing layers, the output size and shape

must match in input shape [5]. This can limit the design and weight introduction of adapters.

For example, inserting an adapter after a layer with C channels, each convolutional layer in

38

the adapter will introduce C2 × k× k parameters where k is the kernel size. This C2 factor

can be problematic for convolutional networks where the number of channels is high such

as the STE BNN discussed in section 4.1.1 where the final layer has 320 output channels.

A second issue for serial adapters is that for adapters inserted at earlier layers of a base

network, gradients must be backpropagated through a large portion of the base network.

For deep networks this can make training slow and for networks with non-standard training

methods/architectures such as BNNs training can be more difficult.

4.2.2 Unidirectional (parallel) Adapter

A solution to the above problems is to have the adapter network run completely parallel

to the main base network as seen in figure 5.3. Sun et al used this idea creating the so

called unidirectional thin adapter (UDTA) [6]. Because the network run parallel to the base

network, gradients and backpropagation do not have to pass through the base network to

reach adapter parameters. Using this approach, Sun et al reduced backpropagation time by

over 80% at small increase in forward pass time compared to finetuning the base network

[6]. Furthermore, because the adapter is not placed in between existing layers, one has much

more freedom in controlling architecture of the overall adapter networks.

Figure 4.6: UDTA network structure by [6]. Here the encoder and original network (red

and purple) are trained on the initial domain agnostic dataset e.g. imageNet and kept frozen.

Because the adapter networks are seperated from the original network, backpropagation does

not need to go through the original network

Sun et al, used encoders to reduce the feature map size before passing it to the adapter

layer [6] as seen in figure 4.6. To limit the amount of additional parameters, this project

instead uses average pooling to ensure size consistency between layers. Sun et al first uses a

1x1 convolution layer to increase the number of channels followed by batch normalisation

and a ReLu function [6]. Then, Sun et al uses depthwise seperable convolutions in their

39

so called ’thinblock’ adapter. Depthwise, separable convolutions were first intorduced by

Mobilenet [55]. Convolution is broken up into 2 steps: ’depthwise’ convolution where each

channel is convolved independently of one another to capture spatial context (typically a 3x3

kernel). Then a standard 1x1 or ’pointwise’ convolution is performed to capture relationship

between channels. [55] showed that depthwise seperable convolution can achieve comparable

performance while using less operations and parameters.

40

Chapter 5

Methodology

5.1 Overview

To analyse the effectiveness of adapter networks, several datasets and BNN architectures are

used. The Cifar10 dataset [23] is first used as the initial dataset to establish the feasibility

of using adapter networks withBNN. The investigation is then scaled to the more difficult

Cifar100 dataset [23]. Finally the analysis is scaled up to larger more realistically sized

images using the Oxford Pets and Oxford Flowers 102 datasets [25, 24]. The Cifar10 and

Cifar100 datasets contain 3x32x32 coloured images while the Oxford Pets and flowers

datasets contain much larger RGB coloured images that vary in size.

For Cifar10 and Cifar100, an initial BNN architecture used by [1] is used. The dataset

is initially split into 2 subsets; the first subset is used to train the BNN from scratch while

the remaining group is used as the finetuning dataset. The BNN for these datasets are first

trained to reach comparable accuracy to their fp32 counterparts. For the Oxford Pets and

Flowers, a BNN (called BiReal net) that is pretrained on ImageNet is used as the base BNN

[4]. The Oxford pets and flowers dataset are then used as the finetuning dataset .

2 adapter strategies are investigated. First, a serial approach is examined whereby adapter

networks are inserted in between existing layers [5]. The second approach looks at the so

called unidirectional adapter that runs parallel to the base network [6].

Finally, pruning is introduced to reduce adapter network size and analyse the effect on

accuracy. During finetuning, the adapter network is first trained for several epochs before

being pruned and then further trained in so called ’one shot’ pruning method [48].

All training was performed using an 8 GB RTX 2070 Super GPU and AMD Ryzen 3700x

CPU using Pytorch 1.13.

5.2 Comparing size of adapters to base network

In previous investigations around adapters, the number of weights could be directly used

to compare the size of the adapters with respect to the size of the base network [21, 5, 6].

41

However,in this investigation the base network is binary while the adapters use 32-bit floating

point weights. As such one cannot directly compare number of weights as a measure of size.

To better compare the size of adapters, the memory size of each weight (32 for fp32 numbers

and 1 for binary weights) is considered. The size of the adapter can then be expressed as a

percentage of memory relative to the memory size of the base BNN

Size % =
32n f p32 +nbin

32N f p32 +Nbin

×100%

where lowercase n denotes the number of floating point or binary weights in the adapter and

uppercase N denotes the total number of floating point or binary weights in the base BNN.

This metric considers the size of weights and so can more accurately measures the size of

the adapter with respect to the base BNN.

5.3 Base Binary Network

5.3.1 STE BNN

This project investigates twoBNNs to be used as the base network for adapter finetuning.

The first is the STE BNN by Courbariaux et al as detailed in section 4.1.1 in the Literature

Review. [1]. This BNN is first trained from scratch on an initial dataset before undergoing

finetuning. This BNN represents a base BNN that many other BNNs are based off [2, 1, 47].

The BNN is applied to the Cifar10 and 100 based benchmarks.

An important feature to note of the BNN used by Courbariaux et al [1] to achieve

their results is that the number of weights for the BNN is significantly larger than the

equivalent FP32 network it is compared to. If one takes into account the theoretical memory

requirements (fp32 parameters requiring 32bits whereas binary weights needing only 1

bit) then the size of each network is comparable. While there may increased amount of

multiplications and addition operations with the BNN, this could be offset by the arithmetic

operation being reduced to XNOR and bitcounting operations respectively when the BNN is

deployed on specialized hardware [2].

Table 5.1: Memory Footprint and number of parameters of BNN by [1] and a full precision

Resnet model that they compared with. The memory size is adjusted assuming binary weights

are 1 bit and fp32 are 32 bits.

Binary Weights fp32 Weights Total Weights
Memory Size

(kB)

BNN 4330165 6250 4336415 566

Full Precison

Resnet Model
- 175258 175258 701

42

Figure 5.2: Network Architecture of ReAct Net’s BNN by [4]. c is the number of channels,p

is the padding, s is the stride of the convectional kernel. The architecture is almost identical

to that of Resnet18 [16]

5.4 Adapters

For this project, two adapter strategies are explored: Serial and parallel based adapters. Serial

adapters are added in between existing layers while a parallel approach extracts feature maps

from the existing layers, using them as inputs to the adapters. Both approaches have their

strengths and weaknesses. The serial adapter can be implemented with minimal modification

to the base network code. However, because the adapter is placed between two existing layers,

the input and output shape of the adapter is fixed limiting the design flexibility. Because a

parallel approach only uses the base network to extract feature maps, the design and shape of

each adapter is more flexibile. However, the additional modifcations to underlying network

code must be made. This project investigates two different [CNN] based adapter architectures

by [5] and [6].

44

Figure 5.3: The two types of adapter networks investigated in this project.

5.4.1 Serial Adapter Design

For the serial approach, the same adapter architecture from Rebulli et al. is used [5]. However,

the final layer is replaced by a hardtanh function (to ensure input values to binary convolutions

are between 1 and -1) [1]. Furthermore, the an adapter is placed after each layer similar to

figure 5.3.

Figure 5.4: Serial Adapter used in this project [5]

45

Figure 5.6: Structure of thinblock used in [6] and our thinblock design. Average pooling is

added to ensure the output shape matches the feature map of the next layer.

5.5 Reducing Adapter Parameters

Because the base network is composed primarily of 1 bit weights, there is a more stringent

constraint on the number of weights one can introduce via adapter networks. This is due

to adapter weights being 32-bit compared to their 1 bit counterpart in the base BNN. This

project aims to investigate 2 methods to reduce weights: Grouped Convolution and pruning.

5.5.1 Grouped Convolution

A single 2D Convolution filter typically include all input channels Cin. This means for a

kernel size of (k,k) and output channels Cout the total number of parameters introduced

is CinCoutk
2. Instead of using all input channels, one can instead use a subset of the input

channels in so called grouped or depthwise seperable convolution. Assuming g is the number

of subsets to create (and g divides the Cin and Cout), then the number of parameters introduced

is CinCout k
2

g
. The extreme case of this is depthwise convolution seen in the thinblock in figure

5.6 where g is equal to the number of input channels (assuming Cin =Cout). In this case each

input channel is convolved with its own independent filter.

47

Figure 5.7: Standard convolution vs Grouped or depthwise convolution. For standard convo-

lution, each input channel is included in each convolution filter. For grouped convolution, the

input channels are separated into g groups and then regular convolution is applied to each of

these groups and the output channels are concatenated together

This project investigates the effect of increasing g on the training accuracy for both serial

and parallel adapter methods. For the thinblock adapter, grouped convolution is applied to

the final 1x1 convolutional layer (weights of this layer are then CinCout/g.

5.5.2 Pruning

Another method for reducing parameters in adapters is by pruning.Pruning in neural networks

is an network optimisation technique where weights are removed from the neural network.

Researchers have shown that up to 90% of weights can be pruned/removed without affecting

test accuracy [48]. Pruning strategies can range from being completely random to a global

strategy where the smallest p% of weights are removed.

By pruning the network of unnecessary weights, the resulting network can be smaller

and be made to faster allowing networks to be better deployed on lower end hardware. In this

project, one shot pruning is employed with a mixture of structured and unstructured pruning.

Pruning in Pytorch is implemented by applying a bitmask over the original weights

setting them to zero [26]. As such, no actual speed up and weights saving is seen after

pruning said weights. However, the strategy presented would allow one to transfer said

48

Figure 5.8: Example of how pruning is implemented in Pytorch where a bitmask is used to set

’pruned’ weights to zero. For structured pruning the shape of the weight tensor is considered

so either the entire weight tensor is pruned or not pruned. For unstructured pruning, any

parameter meeting the pruning criteria (e.g. smallest parameter magnitude) is pruned.

weights to a different layer that would allow one to see tangible speed up and weight savings

as seen in figure 5.9

5.5.2.1 Pruning Strategy

The pruning strategy is applied thin block structure in figure 5.6 and thus only the parallel

adapter network is pruned for this project. A one shot pruning method is performed whereby

the adapter network is trained with all parameters during the first half of training and then

pruned and then further trained.

Most parameters in a CNN are located at the convolutional layers due to the number

of parameters due to the number of parameters being O(CinCout). Structured pruning on

the filter level is performed on the depthwise convolution layer. The L1 norm is used to

determine the magnitude of the matrix and the smallest p% of filters are removed.

||W ||L1 = ∑
i

∑
j

|Wi j|

Where |Wi j| is the absolute value for element Wi j. For the pointwise convolution layer,

an unstructured pruning approach is used where the smallest p% parameters are removed.

Unstructured pruning is used for the pointwise convolution as each filter is equivalent to

outputting a linear combination of input channels and so the pruned filter can be transferred

to a new layer.

49

Figure 5.9: Example of how pruned layers can be transferred to a new layer and truly

be pruned. Using the pruning strategy above, the new layers would simply exclude the

corresponding input channel during convolution

.

5.6 Benchmarks

5.6.1 Cifar5-5 and Cifar80-20

The STE BNN needs to first be trained from scratch. However, this inviestigation requires an

additional dataset to act as the domain to finetune the base network. As such, the Cifar10 and

Cifar100 datasets are split into two datasets, one serving as the initial training dataset and the

second acting as the new target domain to finetune the trained network to.

For Cifar5-5, the first 5 alphabetical classes are used as the initial training dataset for the

STE BNN. The remaining 5 classes are then used to create the transfer learning benchmark

as seen in figure 5.10. The BNN is trained until comparable accuracy is reached compared to

its fp32 couterpart [1]. This trained network is then finetuned on the second dataset.

The Cifar80-20 benchmark also follows a similar process, however the STE BNN is first

trained on the last 80 classes in Cifar100. Once trained, the remaining 20 classes serve as the

finetuning benchmark.

50

Figure 5.10: Sample of 32x32 images of each class in the Cifar-10 Dataset. Each class

contains 5000 training images and 1000 test images [23]. For the initial investigation, the

Cifar-10 dataset is split into dataset A and B. The model is first trained on dataset A and then

finetuned onto dataset B

5.6.2 Flowers102 and Oxford Pets Dataset

Cifar10 and Cifar100 provide a fast initial dataset for experimentation due to it small 3x32x32

resolution. To better test adapter networks for finetuning, datasets containing images of much

higher resolution (e.g. 224x224 RGB images) are used. In particular, the Flower102 dataset

(102 flower catagories) and Oxford Pets (37 different breeds of dogs and cats) are used as

examples of domains one might wish to finetune a pretrained network for classification [24,

25].

Table 5.4: Dataset Information for flower102 and Oxford Pets dataset. The image size varies

between images and number of images for each class is not equal

Classes Training Images Test Images Total Images

Flowers102 102 1020 1020 2040

Oxford Pets 37 3680 3669 7349

ImageNet is a popular benchmark for image classification containing over 14 million

images and 1000 classes [56]. Model that achieve high accuracy on this dataset are often

51

after the images are rescaled to [0,1) and are calculated from the initial dataset (e.g. the 80

classes in Cifar100)

5.7.1.2 Hyperparameters

For the hyperparameters a learning rate of 1e-3 was used in conjuction with a batch size

of 64. The Adam Optimizer is used with default parameters [57]. The BNN is first trained

for 200 Epochs on the initial dataset (e.g. Dataset A in figure 5.10). The BNN used as the

base network for finrtuning is the BNN that achieves the highest top 1% accuracy during the

training.

For adapter training the learning rate,batch size and Adam optimizer remains the same as

above unless specified. For standard finetuning methods, the learning rate is reduced to 1e-4.

5.7.1.3 Finetuning Procedures

The model is first finetuned to the target domain using the standard methods where only the

head/classification layer is retrained while keeping all other weights frozen and the ’standard’

finetuning method where all weights are retrained on the the target domain. These methods

serve as benchmarks to measure the effectiveness of using adapters for finetuning.

5.7.1.4 Cifar 5-5 Experiments

For adapters , all weights in the base BNN class are frozen except for the final linear/classification

layer(s). For Cifar10, only serial adapters are examined. 4 serial adapter configurations are

performed: a single adapter placed after each residual block as seen in figure 5.1 and an

experiment where adapters are placed after all 3 layers. The results are then compared with

standard finetuning techniques.

5.7.1.5 Cifar 80-20 Experiments

Both the serial approach in the Cifar 10 experiments and UDTA approach are analysed

with the Cifar 100. Furthermore, for the experiment whereby an adapter is added after

every residual block, the effect on test accuracy due to grouped convolutions on the is also

investigated. Grouped convolutions of 1,2,5,10 and 20 groups are investigated.

For the UDTA approach, feature maps are extracted after every residual block. Both

pruning and grouped convolutions are investigated as methods to reduce parameter weights.

Grouped convolutions is only applied to the final pointwise convolution layer seen in figure

5.6. Groups of 1,2,5,10,20 and groups equal to the number of input channels to each layer

are investigated. The oneshot pruning strategy discussed in section 5.5.2 and is applied to

each adapter in the UDTA network. The effect of pruning is examined at a pruning rate of

0,80,90,95 and 99%.

53

5.7.2 OxfordPets and Flowers102 Dataset

5.7.2.1 Data Augmentation

The following data augmentations were used: The means and standard deviations are derived

Table 5.6: Data Augmentation for Training On Pets and Flower Dataset. The Mean and STD

are derived from ImageNet

Data Augmentation About

ToTensor() 0-255 range is normalised to [0,1]

Random Rotation Randomly rotate image up to 15 degrees

Random Resized Crop Random crop of Image of size (224,224)

Random Horizontal Flip Flip the image horizontally with p = 0.5

Random Vertical Flip Flip the image vertically with p = 0.5

Normalize

Normalize image channels with

mean: (0.485.0.456,0.406)

std: (0.229, 0.224, 0.225)

after the images are rescaled to [0,1) and are calculated from the initial dataset (e.g. the 80

classes in Cifar100)

5.7.2.2 Hyperparameters

As a pretrained model is used, no initial training is needed. For adapter training, the hyperpa-

rameters follow for both flower102 and Oxford Pets datasets use the same hyperparameters

as used in Cifar100 investigations. Finetuning training occurs over 75 epochs.

5.7.2.3 Finetuning Procedures

Adapter training for the flower102 and Oxford Pets dataset follow only focuses on pruning

as the main form of weight reduction strategy. This is because of the ability to better control

the amount of weights that are removed from the adapter networks. Pruning rates of 80,90,95

and 99% are examined.

Finally, these datasets are used to examine if one needs to concatenate the output layer

of the UDTA adapter with the final layer of the base BNN. Concatenating the final layers

increases the number of parameters introduced in the final classification layer. This is

especially true for the ReAct Net which uses a full precision linear layer as the classification

layer [4]. To investigate the effect the same model is also trained with the same procedures

but with the final classification layer attached to final layer of UDTA only. If the output shape

of the UDTA and base BNN are the same, then only using the UDTA head ensures that no

additional parameters are introduced in the final classification layer.

54

Figure 5.12: Parameters in the final layer are proportional to the concatenated length of the

final layers of the base network and and the adapter network. As such using only the final

layer of the UDTA end could significantly reduce the number of parameters introduced

5.8 Summary of Methodology

Benchmark Base BNN Adapter Strategy Weight Reducing Strategy

Cifar 5-5 STE BNN Serial Using a single adapter + Grouped Conv

Cifar 80-20 STE BNN Serial + Parallel Pruning and Grouped Conv

Flower102 ReAct BNN Parallel Pruning and UDTA Head only

Oxford Pets ReAct BNN Parallel Pruning and UDTA Head only

Table 5.7: Summary of training procedures investigated in this project

55

Chapter 6

Results and Discussion

6.1 Cifar5-5 Benchmark

6.1.1 Initial Training

The BNN used for training is trained for 400 epochs on the first 5 classes of Cifar10. It is

trained until it reaches comparable accuracy to the baseline Resenet model as seen in table

6.1

Top 1% Accuracy Binary Weights FP32 Weights
Total Number of

Weights

Effective

Memory Size (kB)

BNN 98.72% 4330165 6250 4336415 566

FP32 Resnet18 97.1% - 175258 175258 701

Table 6.1: Top 1% Over first 5 classes of Cifar10 and comparative memory size for the STE

BNN by [1] and the baseline real valued resnet18 like model

6.1.2 Serial Adapter

The last 5 classes in Cifar10 are then used as target dataset to finetune our BNN towards. A

serial adapter approach is implemented for these 5 classes. The adapter used is based on [5]

and can be seen in figure 5.4. The first set of experiments adds adapters after each residual

block as seen in figure 5.1 resulting in 3 adapters being inserted into the network. For this

setup, a grouped convolutions at groups of 10 and 20 are also examined. The second set of

experiments add only a single adapter after each layer.

6.1.3 Discussion

Regular finetuning method outperforms serial adapters on the remaining Cifar5 classes

reaching an accuracy of 96%. The best method of 3 adapters with no grouped convolutions

achieves only 91%. While this may appear close and using only a fraction of total weights,

56

trivial and would require testing the adapter after each layer or block. While this network has

3 blocks/layers, this issue could become problematic for deeper networks.

6.2 Cifar 80-20

6.2.1 Serial Adapter

Table 6.3: Top 1% Accuracy and Number of weights introduced for the serial adapter

approach

Finetuning Method
Top 1%

Accuracy

Weights

Introduced

% of Base BNN

Memory

Average Epoch

Time (s)

Relative Speed

Up

Regular Finetuning 75.0% - - 13.1 -

Head Only Finetune 65.5% - - 7.7 1.41

3 Adapters 76.2% 136640 96.4% 9.2 1.30

3 Adapters (2 Groups) 75.2% 69440 49% 9.0 1.31

3 Adapters (5 Groups) 74.0% 29120 20.5% 9.0 1.31

3 Adapters (10 Groups) 72.6% 15680 11.1% 9.1 1.31

3 Adapters (20 Groups) 70.0% 8960 6.3% 9.2 1.30

6.2.2 UDTA Adapter

6.2.2.1 Pruning Results

Table 6.4: Finetuning Results on the 20 classes in Cifar80-20 and the effect of using Pruning.

Number of weights includes the additional weights from the last classification layers

Top 1%

Accuracy

Number of

fp32 weights

Number of

Binary Weights

% of Base

BNN memory

Average

Epoch Time (s)

Relative

Speed Up

Head Only 65.4% 0 0 0.0% 7.65 1.42

Regular Finetune 75.0% 0 0 0.0% 13.24 1.0

Prune 99% 67.9% 4438 6410 3.3% 8.75 1.34

Prune 95% 71.2% 11292 6410 8.1% 8.73 1.34

Prune 90% 73.4% 19864 6410 14.2% 8.74 1.34

Prune 80% 74.1% 37008 6410 26.2% 9.02 1.32

No Pruning 76.4% 174160 6410 123.0% 9.08 1.31

6.2.2.2 Grouped Convolution

6.2.3 Discussion

Using regular finetuning, the BNN reached an accuracy of 75% over the target domain

of 20 different Cifar80-20 classes. Regardless of adapter approach, the accuracy increases

59

Table 6.5: Finetuning Results on the 20 classes in Cifar80-20 and the effect of Using Grouped

Convolution. Number of weights includes the additional weights from the last classification

layers

Top 1%

Accuracy

Number of

fp32 weights

Number of

Binary Weights

% of Base

BNN memory

Average

Epoch Time (s)

Relative

Speed Up

Head Only 65.4% 0 0 0.0% 7.65 1.42

Regular Finetune 75.0% 0 0 0.0% 13.24 1

Grouped Conv All% 70.2% 8560 6410 6.1% 8.44 1.36

Grouped Conv Group 20 72.2% 16080 6410 11.4% 8.56 1.35

Grouped Conv Group 10 73.2% 24400 6410 17.3% 8.57 1.35

Grouped Conv Group 5 74.5% 41040 6410 29.0% 8.54 1.35

Grouped Conv Group 2 75.8% 90960 6410 64.2% 8.52 1.25

No Grouped Convolution 76.4% 174160 6410 123.0% 9.08 1.31

depending on the number of domain specific parameters added to the network. For example

using grouped convolution where there are Cin groups in the UDTA, and serial adapters with

20 groups both introduce approximately the same number of parameters and achieve the

same accuracy of about 70 %. By adding parameters equal to or exceeding the base BNN’s

memory, adapters can achieve higher accuracy than regular finetuning however, this would

defeat the purpose of adapter approach. This can be seen in figure 6.3 where all adapter

strategies achieve similar performance depending on the number of parameters introduced.

The accuracy is approximately proportional to the logarithim of the number of adapter

parameters introduced.

All three adapter strategies see a faster training time compared to regular finetuning with

each epoch being approximately 1.3-1.4 times faster than regular finetuning which must

update all weights in the base BNN. As the binary weights are treated as real valued weights

during back propagation, the number of gradient updates are 2-3 orders of magnitude more

than when using adapter strategies.

Based on the training speed and accuracy vs parameters seen in figure 6.3, any adapter

strategy presented may be a reasonable approach. For ease of use, the serial approach would

be recommended as it does not need modification of the underlying network class. In Pytorch,

one can append the adapter to the end of an existing layer. UDTA approach requires the

extraction of intermediate features and so would require a rewriting of the class. This can be

cumbersome especially for deeper networks.

For flexibility, pruning would be the best strategy over using grouped convolutions as

it is more flexible in terms of how many parameters to have in the adapter as the number

of groups g in grouped convolution must be divide Cin or Cout and gmax = min(Cin,Cout).

Furthermore, as pruning is assessed during training time, pruning could be better tailored to

specific datasets. Grouped convolution groups adjacent channels together which may not be

optimal.

60

Chapter 7

Future Work and Improvement

7.1 Finetuning Methods

7.1.1 Adapter Architecture

This capstone project investigated the use adapters used by [5] for serial adapters and the

thinblock design for the UDTA adapter [6]. Further investigations into different architectures

could help make adapters more effecient and reliable over different domains. In particular,

this capstone project used average pooling after an adapter block to ensure the output size

would match the incoming feature. A more novel way of approaching this issue may further

help adapter accuracy.

7.1.2 LoRA

Adapters were first proposed for the use in NLP [21] as a parameter efficient way of finetuning

large language models. However, adapters can be difficult to use effectively as they introduce

additional design parameters such as the adapter architecture and where to actually place

said adapter [58]. Furthermore, adapters introduce additionally parameters and inference

time [58].

The LoRA (Low Rank Adaptation) method has seen large success in recent time in

quickly finetuning large language models, achieving SOTA finetuned accuracy on pretrained

language model with a single GPU [58]. Using LoRA, Taori et al finetuned a 7 billion llama

LLM to create the Alpaca LLM in less than an hour of GPU training across 8 Nvidia A100s

[10, 11]. Finetuning consisted of only 1.2 million training parameters or 0.017% of total

parameters. However, these additional parameters do need introduce any additional inference

time as they adjust the existing weights [58] when loaded in.

The LoRA method freezes the pretrained weights and introduces a low rank matrix

decomposition as the target weights to train under the hypothesis that weights updates during

finetuning have a low ’intrinsic rank’ [58].

Wf inetune =W0 +∆W

65

Where W0 are the frozen pretrained weights of size R
d×k and ∆W = BA are the trainable

weights. Here B is a matrix of size Rd×r and A is a matrix of size Rr×k, with r being the rank

and |r|<< min(d,k).

The advantages of LoRA is that it has the same ability as parameters to be easily swapped

out depending on the target task but achieving this by not introducing any new additional

parameters as the ∆W is directly added to the pretrained weights.

LoRA currently is targeted for finetuning LLM which typically use transformer based

models. In the future applying LoRA-like methods to CNNs and quantized models could be

interesting as this could eliminate the need to introduce additional parameters reducing the

computational resources to run a model on low powered devices.

7.2 Reducing Computing Resources

7.2.1 Quantization

For this project, adapter weights were full 32 bit floating point numbers. To further reduce

computational resources, quantization could be used to further reduce the additional memory

overhead and also allow faster inference times. Quantization converts the floating point oper-

ations into integer operations increasing inference time and reducing hardware requirements.

In the future, it would be interesting to examine the accuracy trade off when quantizing the

adapters to 16bit, 8bit and even lower [59].

7.2.2 Pruning

Only oneshot pruning was investigated in this project where the p% of weights are pruned

all at once. However [48] showed that iterative pruning, where only p1/n% of weights were

pruned each round and the remaining weights are reset to their original initialisation over

n rounds produced more stable and lower loss in accuracy compared to oneshot pruning.

Using iterative pruning may yield better pruned adapter networks which can further reduce

computational demand and resources.

Furthermore, pruning was not applied to the final classification layer. Pruning the final

layer could further reduce the number of parameters especially for the UDTA approach

where the final layer of the base BNN and adapter are concatenated together. Currently sparse

matrix multiplication is not implement in many deep learning frameworks. To see tangible

memory and speed improvements, one would have to use a structured approach, where entire

columns in the linear layer are pruned. This is equivalent to removing input features e.g.

instead of 512 input features, 75% of column pruning would only use 128 of the total input

features.

66

7.3 On Device Training

Ultimately, the goal of BNNs and adapters is to potentially achieve on-device finetuning.

However, the methods presented in this capstone project would not be feasible for on-device

training as the adapters must be first over-parameterised and then pruned to achieve both

accuracy and weight reduction [48].

However, the iterative pruning could give a good pathway to achieving semi on-device

training. Given an initial domain agnostic dataset, one could use the iterative pruning

strategies outlined in [48] to identify ’winning lottery tickets’ weight initialisations for

general image classification. The pruned adapters could then be exported to low powered

devices and then either further trained on the device itself.

67

Chapter 8

Conclusion

This capstone project examined the effectiveness of adapters as a finetuning method for

BNN based CNNs. The approaches were derived from existing adapter techniques. However,

BNNs provide a much harder constraint on the number of parameters one can introduce as

one needs to consider the memory overhead between traditional 32-bit floating point weights

and 1 bit binary weights. This meant modifications to existing adapter architectures were

needed (such as pruning and grouped convolution), to reduce the size of the introduced

adapters [5, 6]. It was found adapters, regardless of strategy, can achieve comparable accu-

racy, reduce training time while being memory efficient.

Across all datasets examined, the accuracy of adapter based transfer learning was lower

than regular finetuning where all weights are trained. However, this difference was only

1-5 percentages points in difference with the highly optimized adapters. Furthermore, this

result scaled to more realistic datasets such as Oxford Pets and Flower102, both of which

use high resolution images and training samples of less than 100 per class [25, 24]. The

loss of accuracy when using adapter finetuning could still be acceptable for devices with

low computational resources. This is because adapters provide a memory efficient way of

repurposing a pretrained model to a new target domain so multiple adapters, and so target

domains, can be stored and swapped out efficiently [22, 5, 21].

The overall training time per epoch was also demonstrably faster when using adapters

where training times could be up 1.4x faster per epoch. Results from figures 6.4, 6.5 and

6.6 showed that adapters also reach their maximum accuracy earlier than regular finetuning

which often required the maximum number of provided iterations.

Finally, adapters can be made very small being less than 5% of the base BNN’s total

memory while only losing a few percentage point in accuracy. Parameter reducing techniques

such as grouped convolution and pruning were required to reduce the number of parameters

in the adapters. Furthermore, it is important to note that as BNN’s have a lower theoretical

68

memory (assuming one has hardware to store single bit weights and activations) than their

floating point counterpart, these adapters are much smaller compared to those found in

literature, which can be up to 25% of the base network [6] as the 1 bit size of binary weights

must be taken in to account when using BNNs. Across the datasets a sweetspot of adapters

between 6 and 12% of the base BNN’s memory was found compromising between adapter

size and accuracy.

8.1 Learned Practices

Empirically, figure 6.3, showed that the adapter accuracy did not depend on the adapter

approach used a mainly depended on the number of weights introduced. More complicated

datasets would be needed to truly measure this effect

8.2 Limitations of study

The strategies and approaches in this capstone project are rather theoretical in that the binary

weights are not truly binary. This means the benefits such as memory saving and reduced

hardware complexity are not measured (in reality BNNs such as that from [1] still use floating

point arithmetic but are converted to binary weights during inference and training).

Secondly, the pruned weights are not truly pruned but rather set to zero during pruning

[26]. Having truly pruned layers would allow one to analyse the speed up as one prunes the

network. As such the weight reductions from pruning in this project are purely theoretical.

Finally, this capstone only used a resnet18 BNN variant [4]. Using binarized networks

designed to run on lower end hardware such as MobileNet would be more applicability and

efficient than using resnet based models [55].

8.3 Future Directions

This capstone project was focused entirely on CNN based BNNs and on image classification.

Extending this study to more complicated computer vision tasks such as image segmentation

or object detection would increase the applicability of BNNs and adapters.

Furthermore, the development of specialised hardware to run truly binary BNNs would

enable better measurement of the improved efficiency of using BNNs instead of full precision

networks. Currently the best approximation to speed up when using BNNs would be to

convert the binary weights activations into 8-bit signed integers.

Finally, on-device learning would be an interesting direction to examine. The UDTA

approach could help facilitate this as backpropagation does not go through the base BNN.

Furthermore, UDTA gives high flexibility in the adapter design allowing for highly efficient

adapter architectures to be used.

69

Bibliography

[1] Matthieu Courbariaux et al. Binarized Neural Networks: Training Deep Neural Net-

works with Weights and Activations Constrained to +1 or -1. 2016. DOI: 10.48550/

ARXIV.1602.02830. URL: https://arxiv.org/abs/1602.02830.

[2] Mohammad Rastegari et al. XNOR-Net: ImageNet Classification Using Binary Con-

volutional Neural Networks. 2016. DOI: 10.48550/ARXIV.1603.05279. URL:

https://arxiv.org/abs/1603.05279.

[3] Brais Martinez et al. Training Binary Neural Networks with Real-to-Binary Convolu-

tions. 2020. arXiv: 2003.11535 [cs.CV].

[4] Zechun Liu et al. ReActNet: Towards Precise Binary Neural Network with Generalized

Activation Functions. 2020. arXiv: 2003.03488 [cs.CV].

[5] Sylvestre-Alvise Rebuffi, Hakan Bilen, and Andrea Vedaldi. Learning multiple visual

domains with residual adapters. 2017. DOI: 10.48550/ARXIV.1705.08045. URL:

https://arxiv.org/abs/1705.08045.

[6] Han Gyel Sun et al. Unidirectional Thin Adapter for Efficient Adaptation of Deep

Neural Networks. 2022. arXiv: 2203.10463 [cs.CV].

[7] G. Cybenko. “Approximation by superpositions of a sigmoidal function”. In: Math-

ematics of Control, Signals and Systems 2.4 (Dec. 1989), pp. 303–314. ISSN: 1435-

568X. DOI: 10.1007/BF02551274. URL: https://doi.org/10.1007/BF02551274.

[8] Tom B. Brown et al. Language Models are Few-Shot Learners. 2020. DOI: 10.48550/

ARXIV.2005.14165. URL: https://arxiv.org/abs/2005.14165.

[9] David Silver et al. Mastering Chess and Shogi by Self-Play with a General Rein-

forcement Learning Algorithm. 2017. DOI: 10.48550/ARXIV.1712.01815. URL:

https://arxiv.org/abs/1712.01815.

[10] Rohan Taori et al. Stanford Alpaca: An Instruction-following LLaMA model. https:

//github.com/tatsu-lab/stanford_alpaca. 2023.

[11] Hugo Touvron et al. LLaMA: Open and Efficient Foundation Language Models. 2023.

arXiv: 2302.13971 [cs.CL].

[12] Papers with code - imagenet benchmark (image classification). URL: https://

paperswithcode.com/sota/image-classification-on-imagenet.

70

https://doi.org/10.48550/ARXIV.1602.02830
https://doi.org/10.48550/ARXIV.1602.02830
https://arxiv.org/abs/1602.02830
https://doi.org/10.48550/ARXIV.1603.05279
https://arxiv.org/abs/1603.05279
https://arxiv.org/abs/2003.11535
https://arxiv.org/abs/2003.03488
https://doi.org/10.48550/ARXIV.1705.08045
https://arxiv.org/abs/1705.08045
https://arxiv.org/abs/2203.10463
https://doi.org/10.1007/BF02551274
https://doi.org/10.1007/BF02551274
https://doi.org/10.48550/ARXIV.2005.14165
https://doi.org/10.48550/ARXIV.2005.14165
https://arxiv.org/abs/2005.14165
https://doi.org/10.48550/ARXIV.1712.01815
https://arxiv.org/abs/1712.01815
https://github.com/tatsu-lab/stanford_alpaca
https://github.com/tatsu-lab/stanford_alpaca
https://arxiv.org/abs/2302.13971
https://paperswithcode.com/sota/image-classification-on-imagenet
https://paperswithcode.com/sota/image-classification-on-imagenet

[13] Sachin Kumar, Prayag Tiwari, and Mikhail Zymbler. “Internet of Things is a revolu-

tionary approach for future technology enhancement: a review”. In: Journal of Big

data 6.1 (2019), pp. 1–21.

[14] Jiahui Yu et al. “CoCa: Contrastive Captioners are Image-Text Foundation Models”.

In: (2022). DOI: 10.48550/ARXIV.2205.01917. URL: https://arxiv.org/abs/

2205.01917.

[15] Christian Szegedy et al. Rethinking the Inception Architecture for Computer Vision.

2015. arXiv: 1512.00567 [cs.CV].

[16] Kaiming He et al. “Deep Residual Learning for Image Recognition”. In: CoRR

abs/1512.03385 (2015). arXiv: 1512.03385. URL: http://arxiv.org/abs/1512.

03385.

[17] Karen Simonyan and Andrew Zisserman. Very Deep Convolutional Networks for

Large-Scale Image Recognition. 2015. arXiv: 1409.1556 [cs.CV].

[18] Alex Krizhevsky, Ilya Sutskever, and Geoffrey E Hinton. “ImageNet Classifica-

tion with Deep Convolutional Neural Networks”. In: Advances in Neural Infor-

mation Processing Systems. Ed. by F. Pereira et al. Vol. 25. Curran Associates,

Inc., 2012. URL: https://proceedings.neurips.cc/paper/2012/file/

c399862d3b9d6b76c8436e924a68c45b-Paper.pdf.

[19] Itay Hubara et al. “Quantized neural networks: Training neural networks with low

precision weights and activations”. In: The Journal of Machine Learning Research

18.1 (2017), pp. 6869–6898.

[20] Mohammad Rastegari et al. XNOR-Net: ImageNet Classification Using Binary Con-

volutional Neural Networks. 2016. DOI: 10.48550/ARXIV.1603.05279. URL:

https://arxiv.org/abs/1603.05279.

[21] Neil Houlsby et al. Parameter-Efficient Transfer Learning for NLP. 2019. DOI: 10.

48550/ARXIV.1902.00751. URL: https://arxiv.org/abs/1902.00751.

[22] Jonas Pfeiffer et al. AdapterHub: A Framework for Adapting Transformers. 2020. DOI:

10.48550/ARXIV.2007.07779. URL: https://arxiv.org/abs/2007.07779.

[23] Alex Krizhevsky and Geoffrey Hinton. “Learning multiple layers of features from tiny

images”. In: 0 (2009).

[24] Maria-Elena Nilsback and Andrew Zisserman. “Automated Flower Classification over

a Large Number of Classes”. In: Indian Conference on Computer Vision, Graphics

and Image Processing. Dec. 2008.

[25] Omkar M. Parkhi et al. “Cats and Dogs”. In: IEEE Conference on Computer Vision

and Pattern Recognition. 2012.

71

https://doi.org/10.48550/ARXIV.2205.01917
https://arxiv.org/abs/2205.01917
https://arxiv.org/abs/2205.01917
https://arxiv.org/abs/1512.00567
https://arxiv.org/abs/1512.03385
http://arxiv.org/abs/1512.03385
http://arxiv.org/abs/1512.03385
https://arxiv.org/abs/1409.1556
https://proceedings.neurips.cc/paper/2012/file/c399862d3b9d6b76c8436e924a68c45b-Paper.pdf
https://proceedings.neurips.cc/paper/2012/file/c399862d3b9d6b76c8436e924a68c45b-Paper.pdf
https://doi.org/10.48550/ARXIV.1603.05279
https://arxiv.org/abs/1603.05279
https://doi.org/10.48550/ARXIV.1902.00751
https://doi.org/10.48550/ARXIV.1902.00751
https://arxiv.org/abs/1902.00751
https://doi.org/10.48550/ARXIV.2007.07779
https://arxiv.org/abs/2007.07779

[26] Adam Paszke et al. “PyTorch: An Imperative Style, High-Performance Deep Learning

Library”. In: Advances in Neural Information Processing Systems 32. Curran Asso-

ciates, Inc., 2019, pp. 8024–8035. URL: http://papers.neurips.cc/paper/

9015-pytorch-an-imperative-style-high-performance-deep-learning-

library.pdf.

[27] Lukas Biewald. Experiment Tracking with Weights and Biases. Software available

from wandb.com. 2020. URL: https://www.wandb.com/.

[28] Olga Russakovsky et al. “ImageNet Large Scale Visual Recognition Challenge”. In:

International Journal of Computer Vision (IJCV) 115.3 (2015), pp. 211–252. DOI:

10.1007/s11263-015-0816-y.

[29] Allan Pinkus. “Approximation theory of the MLP model in neural networks”. In: Acta

Numerica 8 (1999), pp. 143–195. DOI: 10.1017/S0962492900002919.

[30] Michael A. Nielsen. Neural Networks and Deep Learning. misc. 2018. URL: http:

//neuralnetworksanddeeplearning.com/.

[31] Leslie N. Smith. A disciplined approach to neural network hyper-parameters: Part 1 –

learning rate, batch size, momentum, and weight decay. 2018. arXiv: 1803.09820

[cs.LG].

[32] Frank Rosenblatt. “The perceptron: a probabilistic model for information storage and

organization in the brain.” In: Psychological review 65.6 (1958), p. 386.

[33] Pieter-Tjerk De Boer et al. “A tutorial on the cross-entropy method”. In: Annals of

operations research 134 (2005), pp. 19–67.

[34] David E Rumelhart, Geoffrey E Hinton, and Ronald J Williams. “Learning representa-

tions by back-propagating errors”. In: nature 323.6088 (1986), pp. 533–536.

[35] J. Kiefer and J. Wolfowitz. “Stochastic Estimation of the Maximum of a Regres-

sion Function”. In: The Annals of Mathematical Statistics 23.3 (1952), pp. 462–466.

DOI: 10.1214/aoms/1177729392. URL: https://doi.org/10.1214/aoms/

1177729392.

[36] Tong Yu and Hong Zhu. “Hyper-Parameter Optimization: A Review of Algorithms

and Applications”. In: (2020). DOI: 10.48550/ARXIV.2003.05689. URL: https:

//arxiv.org/abs/2003.05689.

[37] Yann A. LeCun et al. “Efficient BackProp”. In: Neural Networks: Tricks of the Trade:

Second Edition. Ed. by Grégoire Montavon, Geneviève B. Orr, and Klaus-Robert

Müller. Berlin, Heidelberg: Springer Berlin Heidelberg, 2012, pp. 9–48. ISBN: 978-3-

642-35289-8. DOI: 10.1007/978-3-642-35289-8_3. URL: https://doi.org/

10.1007/978-3-642-35289-8_3.

[38] Abien Fred Agarap. “Deep Learning using Rectified Linear Units (ReLU)”. In: CoRR

abs/1803.08375 (2018). arXiv: 1803.08375. URL: http://arxiv.org/abs/1803.

08375.

72

http://papers.neurips.cc/paper/9015-pytorch-an-imperative-style-high-performance-deep-learning-library.pdf
http://papers.neurips.cc/paper/9015-pytorch-an-imperative-style-high-performance-deep-learning-library.pdf
http://papers.neurips.cc/paper/9015-pytorch-an-imperative-style-high-performance-deep-learning-library.pdf
https://www.wandb.com/
https://doi.org/10.1007/s11263-015-0816-y
https://doi.org/10.1017/S0962492900002919
http://neuralnetworksanddeeplearning.com/
http://neuralnetworksanddeeplearning.com/
https://arxiv.org/abs/1803.09820
https://arxiv.org/abs/1803.09820
https://doi.org/10.1214/aoms/1177729392
https://doi.org/10.1214/aoms/1177729392
https://doi.org/10.1214/aoms/1177729392
https://doi.org/10.48550/ARXIV.2003.05689
https://arxiv.org/abs/2003.05689
https://arxiv.org/abs/2003.05689
https://doi.org/10.1007/978-3-642-35289-8_3
https://doi.org/10.1007/978-3-642-35289-8_3
https://doi.org/10.1007/978-3-642-35289-8_3
https://arxiv.org/abs/1803.08375
http://arxiv.org/abs/1803.08375
http://arxiv.org/abs/1803.08375

[39] Sergey Ioffe and Christian Szegedy. “Batch Normalization: Accelerating Deep Net-

work Training by Reducing Internal Covariate Shift”. In: CoRR abs/1502.03167

(2015). arXiv: 1502.03167. URL: http://arxiv.org/abs/1502.03167.

[40] Joseph Redmon et al. You Only Look Once: Unified, Real-Time Object Detection.

2016. arXiv: 1506.02640 [cs.CV].

[41] Yann LeCun and Yoshua Bengio. “Convolutional Networks for Images, Speech, and

Time Series”. In: The Handbook of Brain Theory and Neural Networks. Cambridge,

MA, USA: MIT Press, 1998, pp. 255–258. ISBN: 0262511029.

[42] Vincent Dumoulin and Francesco Visin. “A guide to convolution arithmetic for deep

learning”. In: ArXiv e-prints (Mar. 2016). eprint: 1603.07285.

[43] Matthew D Zeiler and Rob Fergus. “Visualizing and Understanding Convolutional

Networks”. In: (2013). DOI: 10.48550/ARXIV.1311.2901. URL: https://arxiv.

org/abs/1311.2901.

[44] Dhiraj Kalamkar et al. A Study of BFLOAT16 for Deep Learning Training. 2019. DOI:

10.48550/ARXIV.1905.12322. URL: https://arxiv.org/abs/1905.12322.

[45] Hao Wu et al. Integer Quantization for Deep Learning Inference: Principles and

Empirical Evaluation. 2020. arXiv: 2004.09602 [cs.LG].

[46] Vincent Vanhoucke, Andrew Senior, and Mark Z Mao. “Improving the speed of neural

networks on CPUs”. In: (2011).

[47] Xingang Wang et al. “Fast Object Detection Based on Binary Deep Convolution

Neural Networks”. In: CAAI Transactions on Intelligence Technology 3 (Oct. 2018).

DOI: 10.1049/trit.2018.1026.

[48] Jonathan Frankle and Michael Carbin. The Lottery Ticket Hypothesis: Finding Sparse,

Trainable Neural Networks. 2019. arXiv: 1803.03635 [cs.LG].

[49] Chuanqi Tan et al. A Survey on Deep Transfer Learning. 2018. DOI: 10.48550/

ARXIV.1808.01974. URL: https://arxiv.org/abs/1808.01974.

[50] Hoo-Chang Shin et al. “Deep convolutional neural networks for computer-aided

detection: CNN architectures, dataset characteristics and transfer learning”. In: IEEE

transactions on medical imaging 35.5 (2016), pp. 1285–1298.

[51] Chuanqi Tan et al. “A survey on deep transfer learning”. In: Artificial Neural Networks

and Machine Learning–ICANN 2018: 27th International Conference on Artificial

Neural Networks, Rhodes, Greece, October 4-7, 2018, Proceedings, Part III 27.

Springer. 2018, pp. 270–279.

[52] Zechun Liu et al. Bi-Real Net: Enhancing the Performance of 1-bit CNNs With

Improved Representational Capability and Advanced Training Algorithm. 2018. arXiv:

1808.00278 [cs.CV].

73

https://arxiv.org/abs/1502.03167
http://arxiv.org/abs/1502.03167
https://arxiv.org/abs/1506.02640
1603.07285
https://doi.org/10.48550/ARXIV.1311.2901
https://arxiv.org/abs/1311.2901
https://arxiv.org/abs/1311.2901
https://doi.org/10.48550/ARXIV.1905.12322
https://arxiv.org/abs/1905.12322
https://arxiv.org/abs/2004.09602
https://doi.org/10.1049/trit.2018.1026
https://arxiv.org/abs/1803.03635
https://doi.org/10.48550/ARXIV.1808.01974
https://doi.org/10.48550/ARXIV.1808.01974
https://arxiv.org/abs/1808.01974
https://arxiv.org/abs/1808.00278

[53] Sylvestre-Alvise Rebuffi, Hakan Bilen, and Andrea Vedaldi. “Efficient parametrization

of multi-domain deep neural networks”. In: Proceedings of the IEEE Conference on

Computer Vision and Pattern Recognition. 2018, pp. 8119–8127.

[54] Rodrigo Berriel et al. “Budget-Aware Adapters for Multi-Domain Learning”. In: 2019

IEEE/CVF International Conference on Computer Vision (ICCV). IEEE, Oct. 2019.

DOI: 10.1109/iccv.2019.00047. URL: https://doi.org/10.1109%2Ficcv.

2019.00047.

[55] Andrew G. Howard et al. MobileNets: Efficient Convolutional Neural Networks for

Mobile Vision Applications. 2017. DOI: 10 . 48550 / ARXIV . 1704 . 04861. URL:

https://arxiv.org/abs/1704.04861.

[56] Jia Deng et al. “Imagenet: A large-scale hierarchical image database”. In: 2009 IEEE

conference on computer vision and pattern recognition. Ieee. 2009, pp. 248–255.

[57] Diederik P. Kingma and Jimmy Ba. Adam: A Method for Stochastic Optimization.

2017. arXiv: 1412.6980 [cs.LG].

[58] Edward J. Hu et al. LoRA: Low-Rank Adaptation of Large Language Models. 2021.

arXiv: 2106.09685 [cs.CL].

[59] Sean Fox et al. “Training Deep Neural Networks in Low-Precision with High Ac-

curacy Using FPGAs”. In: 2019 International Conference on Field-Programmable

Technology (ICFPT). 2019, pp. 1–9. DOI: 10.1109/ICFPT47387.2019.00009.

74

https://doi.org/10.1109/iccv.2019.00047
https://doi.org/10.1109%2Ficcv.2019.00047
https://doi.org/10.1109%2Ficcv.2019.00047
https://doi.org/10.48550/ARXIV.1704.04861
https://arxiv.org/abs/1704.04861
https://arxiv.org/abs/1412.6980
https://arxiv.org/abs/2106.09685
https://doi.org/10.1109/ICFPT47387.2019.00009

Chapter 9

Appendix

9.1 Base Networks

9.1.1 STE BNN

The following STE BNN is from Courbariaux et al. and was retrieved from https://

github.com/itayhubara/BinaryNet.pytorch.git

Table 9.1: Summary Of Network Structure for STE BNN.

Layer (type) Input Shape Output Shape Param # Kernel Shape

ResNet_cifar10 [1, 3, 32, 32] [1, 10] – –

+ BinarizeConv2d [1, 3, 32, 32] [1, 80, 32, 32] 2,160 [3, 3]

+ BatchNorm2d [1, 80, 32, 32] [1, 80, 32, 32] 160 –

+ Hardtanh [1, 80, 32, 32] [1, 80, 32, 32] – –

+ Sequential [1, 80, 32, 32] [1, 80, 32, 32] – –

| + BasicBlock [1, 80, 32, 32] [1, 80, 32, 32] – –

| | + BinarizeConv2d [1, 80, 32, 32] [1, 80, 32, 32] 57,600 [3, 3]

| | + BatchNorm2d [1, 80, 32, 32] [1, 80, 32, 32] 160 –

| | + Hardtanh [1, 80, 32, 32] [1, 80, 32, 32] – –

| | + BinarizeConv2d [1, 80, 32, 32] [1, 80, 32, 32] 57,600 [3, 3]

| | + BatchNorm2d [1, 80, 32, 32] [1, 80, 32, 32] 160 –

| | + Hardtanh [1, 80, 32, 32] [1, 80, 32, 32] – –

| + BasicBlock [1, 80, 32, 32] [1, 80, 32, 32] – –

| | + BinarizeConv2d [1, 80, 32, 32] [1, 80, 32, 32] 57,600 [3, 3]

| | + BatchNorm2d [1, 80, 32, 32] [1, 80, 32, 32] 160 –

| | + Hardtanh [1, 80, 32, 32] [1, 80, 32, 32] – –

| | + BinarizeConv2d [1, 80, 32, 32] [1, 80, 32, 32] 57,600 [3, 3]

| | + BatchNorm2d [1, 80, 32, 32] [1, 80, 32, 32] 160 –

| | + Hardtanh [1, 80, 32, 32] [1, 80, 32, 32] – –

75

https://github.com/itayhubara/BinaryNet.pytorch.git
https://github.com/itayhubara/BinaryNet.pytorch.git

Table 9.1: Summary Of Network Structure for STE BNN.

Layer (type) Input Shape Output Shape Param # Kernel Shape

+ Sequential [1, 80, 32, 32] [1, 160, 16, 16] – –

| + BasicBlock [1, 80, 32, 32] [1, 160, 16, 16] – –

| | + BinarizeConv2d [1, 80, 32, 32] [1, 160, 16, 16] 115,200 [3, 3]

| | + BatchNorm2d [1, 160, 16, 16] [1, 160, 16, 16] 320 –

| | + Hardtanh [1, 160, 16, 16] [1, 160, 16, 16] – –

| | + BinarizeConv2d [1, 160, 16, 16] [1, 160, 16, 16] 230,400 [3, 3]

| | + BatchNorm2d [1, 160, 16, 16] [1, 160, 16, 16] 320 –

| | + Hardtanh [1, 160, 16, 16] [1, 160, 16, 16] – –

| | + Sequential [1, 80, 32, 32] [1, 160, 16, 16] 13,120 –

| + BasicBlock [1, 160, 16, 16] [1, 160, 16, 16] – –

| | + BinarizeConv2d [1, 160, 16, 16] [1, 160, 16, 16] 230,400 [3, 3]

| | + BatchNorm2d [1, 160, 16, 16] [1, 160, 16, 16] 320 –

| | + Hardtanh [1, 160, 16, 16] [1, 160, 16, 16] – –

| | + BinarizeConv2d [1, 160, 16, 16] [1, 160, 16, 16] 230,400 [3, 3]

| | + BatchNorm2d [1, 160, 16, 16] [1, 160, 16, 16] 320 –

| | + Hardtanh [1, 160, 16, 16] [1, 160, 16, 16] – –

+ Sequential [1, 160, 16, 16] [1, 320, 8, 8] – –

| + BasicBlock [1, 160, 16, 16] [1, 320, 8, 8] – –

| | + BinarizeConv2d [1, 160, 16, 16] [1, 320, 8, 8] 460,800 [3, 3]

| | + BatchNorm2d [1, 320, 8, 8] [1, 320, 8, 8] 640 –

| | + Hardtanh [1, 320, 8, 8] [1, 320, 8, 8] – –

| | + BinarizeConv2d [1, 320, 8, 8] [1, 320, 8, 8] 921,600 [3, 3]

| | + BatchNorm2d [1, 320, 8, 8] [1, 320, 8, 8] 640 –

| | + Hardtanh [1, 320, 8, 8] [1, 320, 8, 8] – –

| | + Sequential [1, 160, 16, 16] [1, 320, 8, 8] 51,840 –

| + BasicBlock [1, 320, 8, 8] [1, 320, 8, 8] – –

| | + BinarizeConv2d [1, 320, 8, 8] [1, 320, 8, 8] 921,600 [3, 3]

| | + BatchNorm2d [1, 320, 8, 8] [1, 320, 8, 8] 640 –

| | + Hardtanh [1, 320, 8, 8] [1, 320, 8, 8] – –

| | + BinarizeConv2d [1, 320, 8, 8] [1, 320, 8, 8] 921,600 [3, 3]

| | + BatchNorm2d [1, 320, 8, 8] [1, 320, 8, 8] 640 –

| | + Hardtanh [1, 320, 8, 8] [1, 320, 8, 8] – –

+ AvgPool2d [1, 320, 8, 8] [1, 320, 1, 1] – 8

+ BatchNorm1d [1, 320] [1, 320] 640 –

+ Hardtanh [1, 320] [1, 320] – –

+ BinarizeLinear [1, 320] [1, 10] 3,210 –

76

Table 9.1: Summary Of Network Structure for STE BNN.

Layer (type) Input Shape Output Shape Param # Kernel Shape

+ BatchNorm1d [1, 10] [1, 10] 20 –

+ LogSoftmax [1, 10] [1, 10] – –

9.1.2 ReAct Resnet18

The following Network is from Liu et al. [4] and can be found athttps://github.com/

liuzechun/ReActNet.git

Table 9.2: Weights and Summary of ReactNet used. The layers are

ordered from input - output layer order

Layer (Key :depth-idx) Input Shape Output Shape Param # Kernel Shape

BiRealNet [1, 3, 224, 224] [1, 1000] – –

|-Conv2d: 1-1 [1, 3, 224, 224] [1, 64, 112, 112] 9,408 [7, 7]

|-BatchNorm2d: 1-2 [1, 64, 112, 112] [1, 64, 112, 112] 128 –

|-MaxPool2d: 1-3 [1, 64, 112, 112] [1, 64, 56, 56] – 3

|-Sequential: 1-4 [1, 64, 56, 56] [1, 64, 56, 56] – –

| –BasicBlock: 2-1 [1, 64, 56, 56] [1, 64, 56, 56] – –

| | –LearnableBias: 3-1 [1, 64, 56, 56] [1, 64, 56, 56] 64 –

| | –BinaryActivation: 3-2 [1, 64, 56, 56] [1, 64, 56, 56] – –

| | –HardBinaryConv: 3-3 [1, 64, 56, 56] [1, 64, 56, 56] 36,928 [3, 3]

| | –BatchNorm2d: 3-4 [1, 64, 56, 56] [1, 64, 56, 56] 128 –

| | –LearnableBias: 3-5 [1, 64, 56, 56] [1, 64, 56, 56] 64 –

| | –PReLU: 3-6 [1, 64, 56, 56] [1, 64, 56, 56] 64 –

| | –LearnableBias: 3-7 [1, 64, 56, 56] [1, 64, 56, 56] 64 –

| –BasicBlock: 2-2 [1, 64, 56, 56] [1, 64, 56, 56] – –

| | –LearnableBias: 3-8 [1, 64, 56, 56] [1, 64, 56, 56] 64 –

| | –BinaryActivation: 3-9 [1, 64, 56, 56] [1, 64, 56, 56] – –

| | –HardBinaryConv: 3-10 [1, 64, 56, 56] [1, 64, 56, 56] 36,928 [3, 3]

| | –BatchNorm2d: 3-11 [1, 64, 56, 56] [1, 64, 56, 56] 128 –

| | –LearnableBias: 3-12 [1, 64, 56, 56] [1, 64, 56, 56] 64 –

| | –PReLU: 3-13 [1, 64, 56, 56] [1, 64, 56, 56] 64 –

| | –LearnableBias: 3-14 [1, 64, 56, 56] [1, 64, 56, 56] 64 –

| –BasicBlock: 2-3 [1, 64, 56, 56] [1, 64, 56, 56] – –

| | –LearnableBias: 3-15 [1, 64, 56, 56] [1, 64, 56, 56] 64 –

| | –BinaryActivation: 3-16 [1, 64, 56, 56] [1, 64, 56, 56] – –

| | –HardBinaryConv: 3-17 [1, 64, 56, 56] [1, 64, 56, 56] 36,928 [3, 3]

77

https://github.com/liuzechun/ReActNet.git
https://github.com/liuzechun/ReActNet.git

Table 9.2: Weights and Summary of ReactNet used. The layers are

ordered from input - output layer order

Layer (Key :depth-idx) Input Shape Output Shape Param # Kernel Shape

| | –BatchNorm2d: 3-18 [1, 64, 56, 56] [1, 64, 56, 56] 128 –

| | –LearnableBias: 3-19 [1, 64, 56, 56] [1, 64, 56, 56] 64 –

| | –PReLU: 3-20 [1, 64, 56, 56] [1, 64, 56, 56] 64 –

| | –LearnableBias: 3-21 [1, 64, 56, 56] [1, 64, 56, 56] 64 –

| –BasicBlock: 2-4 [1, 64, 56, 56] [1, 64, 56, 56] – –

| | –LearnableBias: 3-22 [1, 64, 56, 56] [1, 64, 56, 56] 64 –

| | –BinaryActivation: 3-23 [1, 64, 56, 56] [1, 64, 56, 56] – –

| | –HardBinaryConv: 3-24 [1, 64, 56, 56] [1, 64, 56, 56] 36,928 [3, 3]

| | –BatchNorm2d: 3-25 [1, 64, 56, 56] [1, 64, 56, 56] 128 –

| | –LearnableBias: 3-26 [1, 64, 56, 56] [1, 64, 56, 56] 64 –

| | –PReLU: 3-27 [1, 64, 56, 56] [1, 64, 56, 56] 64 –

| | –LearnableBias: 3-28 [1, 64, 56, 56] [1, 64, 56, 56] 64 –

|-Sequential: 1-5 [1, 64, 56, 56] [1, 128, 28, 28] – –

| –BasicBlock: 2-5 [1, 64, 56, 56] [1, 128, 28, 28] – –

| | –LearnableBias: 3-29 [1, 64, 56, 56] [1, 64, 56, 56] 64 –

| | –BinaryActivation: 3-30 [1, 64, 56, 56] [1, 64, 56, 56] – –

| | –HardBinaryConv: 3-31 [1, 64, 56, 56] [1, 128, 28, 28] 73,856 [3, 3]

| | –BatchNorm2d: 3-32 [1, 128, 28, 28] [1, 128, 28, 28] 256 –

| | –Sequential: 3-33 [1, 64, 56, 56] [1, 128, 28, 28] 8,448 –

| | –LearnableBias: 3-34 [1, 128, 28, 28] [1, 128, 28, 28] 128 –

| | –PReLU: 3-35 [1, 128, 28, 28] [1, 128, 28, 28] 128 –

| | –LearnableBias: 3-36 [1, 128, 28, 28] [1, 128, 28, 28] 128 –

| –BasicBlock: 2-6 [1, 128, 28, 28] [1, 128, 28, 28] – –

| | –LearnableBias: 3-37 [1, 128, 28, 28] [1, 128, 28, 28] 128 –

| | –BinaryActivation: 3-38 [1, 128, 28, 28] [1, 128, 28, 28] – –

| | –HardBinaryConv: 3-39 [1, 128, 28, 28] [1, 128, 28, 28] 147,584 [3, 3]

| | –BatchNorm2d: 3-40 [1, 128, 28, 28] [1, 128, 28, 28] 256 –

| | –LearnableBias: 3-41 [1, 128, 28, 28] [1, 128, 28, 28] 128 –

| | –PReLU: 3-42 [1, 128, 28, 28] [1, 128, 28, 28] 128 –

| | –LearnableBias: 3-43 [1, 128, 28, 28] [1, 128, 28, 28] 128 –

| –BasicBlock: 2-7 [1, 128, 28, 28] [1, 128, 28, 28] – –

| | –LearnableBias: 3-44 [1, 128, 28, 28] [1, 128, 28, 28] 128 –

| | –BinaryActivation: 3-45 [1, 128, 28, 28] [1, 128, 28, 28] – –

| | –HardBinaryConv: 3-46 [1, 128, 28, 28] [1, 128, 28, 28] 147,584 [3, 3]

| | –BatchNorm2d: 3-47 [1, 128, 28, 28] [1, 128, 28, 28] 256 –

78

Table 9.2: Weights and Summary of ReactNet used. The layers are

ordered from input - output layer order

Layer (Key :depth-idx) Input Shape Output Shape Param # Kernel Shape

| | –LearnableBias: 3-48 [1, 128, 28, 28] [1, 128, 28, 28] 128 –

| | –PReLU: 3-49 [1, 128, 28, 28] [1, 128, 28, 28] 128 –

| | –LearnableBias: 3-50 [1, 128, 28, 28] [1, 128, 28, 28] 128 –

| –BasicBlock: 2-8 [1, 128, 28, 28] [1, 128, 28, 28] – –

| | –LearnableBias: 3-51 [1, 128, 28, 28] [1, 128, 28, 28] 128 –

| | –BinaryActivation: 3-52 [1, 128, 28, 28] [1, 128, 28, 28] – –

| | –HardBinaryConv: 3-53 [1, 128, 28, 28] [1, 128, 28, 28] 147,584 [3, 3]

| | –BatchNorm2d: 3-54 [1, 128, 28, 28] [1, 128, 28, 28] 256 –

| | –LearnableBias: 3-55 [1, 128, 28, 28] [1, 128, 28, 28] 128 –

| | –PReLU: 3-56 [1, 128, 28, 28] [1, 128, 28, 28] 128 –

| | –LearnableBias: 3-57 [1, 128, 28, 28] [1, 128, 28, 28] 128 –

|-Sequential: 1-6 [1, 128, 28, 28] [1, 256, 14, 14] – –

| –BasicBlock: 2-9 [1, 128, 28, 28] [1, 256, 14, 14] – –

| | –LearnableBias: 3-58 [1, 128, 28, 28] [1, 128, 28, 28] 128 –

| | –BinaryActivation: 3-59 [1, 128, 28, 28] [1, 128, 28, 28] – –

| | –HardBinaryConv: 3-60 [1, 128, 28, 28] [1, 256, 14, 14] 295,168 [3, 3]

| | –BatchNorm2d: 3-61 [1, 256, 14, 14] [1, 256, 14, 14] 512 –

| | –Sequential: 3-62 [1, 128, 28, 28] [1, 256, 14, 14] 33,280 –

| | –LearnableBias: 3-63 [1, 256, 14, 14] [1, 256, 14, 14] 256 –

| | –PReLU: 3-64 [1, 256, 14, 14] [1, 256, 14, 14] 256 –

| | –LearnableBias: 3-65 [1, 256, 14, 14] [1, 256, 14, 14] 256 –

| –BasicBlock: 2-10 [1, 256, 14, 14] [1, 256, 14, 14] – –

| | –LearnableBias: 3-66 [1, 256, 14, 14] [1, 256, 14, 14] 256 –

| | –BinaryActivation: 3-67 [1, 256, 14, 14] [1, 256, 14, 14] – –

| | –HardBinaryConv: 3-68 [1, 256, 14, 14] [1, 256, 14, 14] 590,080 [3, 3]

| | –BatchNorm2d: 3-69 [1, 256, 14, 14] [1, 256, 14, 14] 512 –

| | –LearnableBias: 3-70 [1, 256, 14, 14] [1, 256, 14, 14] 256 –

| | –PReLU: 3-71 [1, 256, 14, 14] [1, 256, 14, 14] 256 –

| | –LearnableBias: 3-72 [1, 256, 14, 14] [1, 256, 14, 14] 256 –

| –BasicBlock: 2-11 [1, 256, 14, 14] [1, 256, 14, 14] – –

| | –LearnableBias: 3-73 [1, 256, 14, 14] [1, 256, 14, 14] 256 –

| | –BinaryActivation: 3-74 [1, 256, 14, 14] [1, 256, 14, 14] – –

| | –HardBinaryConv: 3-75 [1, 256, 14, 14] [1, 256, 14, 14] 590,080 [3, 3]

| | –BatchNorm2d: 3-76 [1, 256, 14, 14] [1, 256, 14, 14] 512 –

| | –LearnableBias: 3-77 [1, 256, 14, 14] [1, 256, 14, 14] 256 –

79

Table 9.2: Weights and Summary of ReactNet used. The layers are

ordered from input - output layer order

Layer (Key :depth-idx) Input Shape Output Shape Param # Kernel Shape

| | –PReLU: 3-78 [1, 256, 14, 14] [1, 256, 14, 14] 256 –

| | –LearnableBias: 3-79 [1, 256, 14, 14] [1, 256, 14, 14] 256 –

| –BasicBlock: 2-12 [1, 256, 14, 14] [1, 256, 14, 14] – –

| | –LearnableBias: 3-80 [1, 256, 14, 14] [1, 256, 14, 14] 256 –

| | –BinaryActivation: 3-81 [1, 256, 14, 14] [1, 256, 14, 14] – –

| | –HardBinaryConv: 3-82 [1, 256, 14, 14] [1, 256, 14, 14] 590,080 [3, 3]

| | –BatchNorm2d: 3-83 [1, 256, 14, 14] [1, 256, 14, 14] 512 –

| | –LearnableBias: 3-84 [1, 256, 14, 14] [1, 256, 14, 14] 256 –

| | –PReLU: 3-85 [1, 256, 14, 14] [1, 256, 14, 14] 256 –

| | –LearnableBias: 3-86 [1, 256, 14, 14] [1, 256, 14, 14] 256 –

|-Sequential: 1-7 [1, 256, 14, 14] [1, 512, 7, 7] – –

| –BasicBlock: 2-13 [1, 256, 14, 14] [1, 512, 7, 7] – –

| | –LearnableBias: 3-87 [1, 256, 14, 14] [1, 256, 14, 14] 256 –

| | –BinaryActivation: 3-88 [1, 256, 14, 14] [1, 256, 14, 14] – –

| | –HardBinaryConv: 3-89 [1, 256, 14, 14] [1, 512, 7, 7] 1,180,160 [3, 3]

| | –BatchNorm2d: 3-90 [1, 512, 7, 7] [1, 512, 7, 7] 1,024 –

| | –Sequential: 3-91 [1, 256, 14, 14] [1, 512, 7, 7] 132,096 –

| | –LearnableBias: 3-92 [1, 512, 7, 7] [1, 512, 7, 7] 512 –

| | –PReLU: 3-93 [1, 512, 7, 7] [1, 512, 7, 7] 512 –

| | –LearnableBias: 3-94 [1, 512, 7, 7] [1, 512, 7, 7] 512 –

| –BasicBlock: 2-14 [1, 512, 7, 7] [1, 512, 7, 7] – –

| | –LearnableBias: 3-95 [1, 512, 7, 7] [1, 512, 7, 7] 512 –

| | –BinaryActivation: 3-96 [1, 512, 7, 7] [1, 512, 7, 7] – –

| | –HardBinaryConv: 3-97 [1, 512, 7, 7] [1, 512, 7, 7] 2,359,808 [3, 3]

| | –BatchNorm2d: 3-98 [1, 512, 7, 7] [1, 512, 7, 7] 1,024 –

| | –LearnableBias: 3-99 [1, 512, 7, 7] [1, 512, 7, 7] 512 –

| | –PReLU: 3-100 [1, 512, 7, 7] [1, 512, 7, 7] 512 –

| | –LearnableBias: 3-101 [1, 512, 7, 7] [1, 512, 7, 7] 512 –

| –BasicBlock: 2-15 [1, 512, 7, 7] [1, 512, 7, 7] – –

| | –LearnableBias: 3-102 [1, 512, 7, 7] [1, 512, 7, 7] 512 –

| | –BinaryActivation: 3-103 [1, 512, 7, 7] [1, 512, 7, 7] – –

| | –HardBinaryConv: 3-104 [1, 512, 7, 7] [1, 512, 7, 7] 2,359,808 [3, 3]

| | –BatchNorm2d: 3-105 [1, 512, 7, 7] [1, 512, 7, 7] 1,024 –

| | –LearnableBias: 3-106 [1, 512, 7, 7] [1, 512, 7, 7] 512 –

| | –PReLU: 3-107 [1, 512, 7, 7] [1, 512, 7, 7] 512 –

80

Table 9.2: Weights and Summary of ReactNet used. The layers are

ordered from input - output layer order

Layer (Key :depth-idx) Input Shape Output Shape Param # Kernel Shape

| | –LearnableBias: 3-108 [1, 512, 7, 7] [1, 512, 7, 7] 512 –

| –BasicBlock: 2-16 [1, 512, 7, 7] [1, 512, 7, 7] – –

| | –LearnableBias: 3-109 [1, 512, 7, 7] [1, 512, 7, 7] 512 –

| | –BinaryActivation: 3-110 [1, 512, 7, 7] [1, 512, 7, 7] – –

| | –HardBinaryConv: 3-111 [1, 512, 7, 7] [1, 512, 7, 7] 2,359,808 [3, 3]

| | –BatchNorm2d: 3-112 [1, 512, 7, 7] [1, 512, 7, 7] 1,024 –

| | –LearnableBias: 3-113 [1, 512, 7, 7] [1, 512, 7, 7] 512 –

| | –PReLU: 3-114 [1, 512, 7, 7] [1, 512, 7, 7] 512 –

| | –LearnableBias: 3-115 [1, 512, 7, 7] [1, 512, 7, 7] 512 –

|-AdaptiveAvgPool2d: 1-8 [1, 512, 7, 7] [1, 512, 1, 1] – –

|-Linear: 1-9 [1, 512] [1, 1000] 513,000 –

9.2 Adapters

9.2.1 Serial Adapters

Table 9.3: Summary of Adapter Architect for serial adapters

Location 1 Input Shape Output Shape Param # Kernel Shape

conv_channel_adapter3 [1, 80, 32, 32] [1, 80, 32, 32] – –

+ BatchNorm2d [1, 80, 32, 32] [1, 80, 32, 32] 160 –

+ Conv2d [1, 80, 32, 32] [1, 80, 32, 32] 6,400 [1, 1]

+ BatchNorm2d [1, 80, 32, 32] [1, 80, 32, 32] 160 –

Location 2 Input Shape Output Shape Param # Kernel Shape

conv_channel_adapter3 [1, 160, 16, 16] [1, 160, 16, 16] – –

+ BatchNorm2d [1, 160, 16, 16] [1, 160, 16, 16] 320 –

+ Conv2d [1, 160, 16, 16] [1, 160, 16, 16] 25,600 [1, 1]

+ BatchNorm2d [1, 160, 16, 16] [1, 160, 16, 16] 320 –

Location 3 Input Shape Output Shape Param # Kernel Shape

conv_channel_adapter3 [1, 320, 8, 8] [1, 320, 8, 8] – –

81

Table 9.3: Summary of Adapter Architect for serial adapters

Location 1 Input Shape Output Shape Param # Kernel Shape

+ BatchNorm2d [1, 320, 8, 8] [1, 320, 8, 8] 640 –

+ Conv2d [1, 320, 8, 8] [1, 320, 8, 8] 102,400 [1, 1]

+ BatchNorm2d [1, 320, 8, 8] [1, 320, 8, 8] 640 –

9.2.2 Parallel Thinblock Adapters

9.2.2.1 STE BNN UDTA Adapter

Table 9.4: Network Summary of Custom thinblock adapter before

Pruning or grouped convolutions For STE BNN

Layer (type) Input Shape Output Shape Param # Kernel Shape

uniAdapt_Net [1, 80, 32, 32] [1, 320, 1, 1] – –

+ thinBlock3 [1, 80, 32, 32] [1, 160, 32, 32] – –

| + Conv2d [1, 80, 32, 32] [1, 80, 32, 32] 720 [3, 3]

| + BatchNorm2d [1, 80, 32, 32] [1, 80, 32, 32] 160 –

| + Conv2d [1, 80, 32, 32] [1, 160, 32, 32] 12,800 [1, 1]

| + BatchNorm2d [1, 160, 32, 32] [1, 160, 32, 32] 320 –

+ AdaptiveAvgPool2d [1, 160, 32, 32] [1, 160, 16, 16] – –

+ thinBlock3 [1, 160, 16, 16] [1, 320, 16, 16] – –

| + Conv2d [1, 160, 16, 16] [1, 160, 16, 16] 1,440 [3, 3]

| + BatchNorm2d [1, 160, 16, 16] [1, 160, 16, 16] 320 –

| + Conv2d [1, 160, 16, 16] [1, 320, 16, 16] 51,200 [1, 1]

| + BatchNorm2d [1, 320, 16, 16] [1, 320, 16, 16] 640 –

+ AdaptiveAvgPool2d [1, 320, 16, 16] [1, 320, 8, 8] – –

+ thinBlock3 [1, 320, 8, 8] [1, 320, 8, 8] – –

| + Conv2d [1, 320, 8, 8] [1, 320, 8, 8] 2,880 [3, 3]

| + BatchNorm2d [1, 320, 8, 8] [1, 320, 8, 8] 640 –

| + Conv2d [1, 320, 8, 8] [1, 320, 8, 8] 102,400 [1, 1]

| + BatchNorm2d [1, 320, 8, 8] [1, 320, 8, 8] 640 –

+ AdaptiveAvgPool2d [1, 320, 8, 8] [1, 320, 1, 1] – –

9.2.2.2 ReActUDTA Adapter

82

Table 9.5: Network Summary of Custom thinblock adapter before

Pruning or grouped convolutions

Layer (type) Input Shape Output Shape Param # Kernel Shape

uniAdapt_Net_React [1, 64, 56, 56] [1, 512] – –

+ thinBlock3 [1, 64, 56, 56] [1, 128, 56, 56] – –

| + Conv2d [1, 64, 56, 56] [1, 64, 56, 56] 576 [3, 3]

| + BatchNorm2d [1, 64, 56, 56] [1, 64, 56, 56] 128 –

| + Conv2d [1, 64, 56, 56] [1, 128, 56, 56] 8,192 [1, 1]

| + BatchNorm2d [1, 128, 56, 56] [1, 128, 56, 56] 256 –

+ AdaptiveAvgPool2d [1, 128, 56, 56] [1, 128, 28, 28] – –

+ thinBlock3 [1, 128, 28, 28] [1, 256, 28, 28] – –

| + Conv2d [1, 128, 28, 28] [1, 128, 28, 28] 1,152 [3, 3]

| + BatchNorm2d [1, 128, 28, 28] [1, 128, 28, 28] 256 –

| + Conv2d [1, 128, 28, 28] [1, 256, 28, 28] 32,768 [1, 1]

| + BatchNorm2d [1, 256, 28, 28] [1, 256, 28, 28] 512 –

+ AdaptiveAvgPool2d [1, 256, 28, 28] [1, 256, 14, 14] – –

+ thinBlock3 [1, 256, 14, 14] [1, 512, 14, 14] – –

| + Conv2d [1, 256, 14, 14] [1, 256, 14, 14] 2,304 [3, 3]

| + BatchNorm2d [1, 256, 14, 14] [1, 256, 14, 14] 512 –

| + Conv2d [1, 256, 14, 14] [1, 512, 14, 14] 131,072 [1, 1]

| + BatchNorm2d [1, 512, 14, 14] [1, 512, 14, 14] 1,024 –

+ AdaptiveAvgPool2d [1, 512, 14, 14] [1, 512, 7, 7] – –

+ thinBlock3 [1, 512, 7, 7] [1, 512, 7, 7] – –

| + Conv2d [1, 512, 7, 7] [1, 512, 7, 7] 4,608 [3, 3]

| + BatchNorm2d [1, 512, 7, 7] [1, 512, 7, 7] 1,024 –

| + Conv2d [1, 512, 7, 7] [1, 512, 7, 7] 262,144 [1, 1]

| + BatchNorm2d [1, 512, 7, 7] [1, 512, 7, 7] 1,024 –

+ AdaptiveAvgPool2d [1, 512, 7, 7] [1, 512, 1, 1] – –

9.3 Custom Benchmarks

9.3.1 Cifar5-5

Cifar10 and Cifar100 can be obtained from https://www.cs.toronto.edu/~kriz/cifar.

html [23]

9.3.1.1 Intial Training Dataset

83

https://www.cs.toronto.edu/~kriz/cifar.html
https://www.cs.toronto.edu/~kriz/cifar.html

Table 9.6: Cifar5-5 Initial Dataset STE BNN is trained on.

Class Training Images Per Class Test Images Per Class

airplane 5000 1000

automobile 5000 1000

bird 5000 1000

cat 5000 1000

deer 5000 1000

Total Images 25000 5000

9.3.1.2 Target Dataset

Table 9.7: Cifar5-5 Target Dataset STE BNN is Finetuned on.

Class Training Images Per Class Test Images Per Class

dog 5000 1000

frog 5000 1000

horse 5000 1000

ship 5000 1000

truck 5000 1000

Total images 25000 5000

9.3.2 Cifar80-20

9.3.2.1 Initial Training Dataset

[h!]Table 9.8: Cifar80 Intitial Dataset STE BNN is trained on.

Class Training Images Per Class Test Images Per Class

chair 500 100

chimpanzee 500 100

clock 500 100

cloud 500 100

cockroach 500 100

couch 500 100

crab 500 100

crocodile 500 100

cup 500 100

dinosaur 500 100

84

dolphin 500 100

elephant 500 100

flatfish 500 100

forest 500 100

fox 500 100

girl 500 100

hamster 500 100

house 500 100

kangaroo 500 100

keyboard 500 100

lamp 500 100

lawn_mower 500 100

leopard 500 100

lion 500 100

lizard 500 100

lobster 500 100

man 500 100

maple_tree 500 100

motorcycle 500 100

mountain 500 100

mouse 500 100

mushroom 500 100

oak_tree 500 100

orange 500 100

orchid 500 100

otter 500 100

palm_tree 500 100

pear 500 100

pickup_truck 500 100

pine_tree 500 100

plain 500 100

plate 500 100

poppy 500 100

porcupine 500 100

possum 500 100

rabbit 500 100

raccoon 500 100

ray 500 100

road 500 100

85

rocket 500 100

rose 500 100

sea 500 100

seal 500 100

shark 500 100

shrew 500 100

skunk 500 100

skyscraper 500 100

snail 500 100

snake 500 100

spider 500 100

squirrel 500 100

streetcar 500 100

sunflower 500 100

sweet_pepper 500 100

table 500 100

tank 500 100

telephone 500 100

television 500 100

tiger 500 100

tractor 500 100

train 500 100

trout 500 100

tulip 500 100

turtle 500 100

wardrobe 500 100

whale 500 100

willow_tree 500 100

wolf 500 100

woman 500 100

worm 500 100

Total Images 40000 8000

9.3.2.2 Target Dataset

Table 9.9: Cifar20 Target Dataset STE BNN is finetuned on.

Class Training Images Per Class Test Images Per Class

apple 500 100

86

aquarium_fish 500 100

baby 500 100

bear 500 100

beaver 500 100

bed 500 100

bee 500 100

beetle 500 100

bicycle 500 100

bottle 500 100

bowl 500 100

boy 500 100

bridge 500 100

bus 500 100

butterfly 500 100

camel 500 100

can 500 100

castle 500 100

caterpillar 500 100

cattle 500 100

Total Images 10000 2000

87

	Introduction
	Motivation
	Emerging Trends
	Advantages of Binary Operations
	Advantages of Adapters

	Research Questions

	Statement Of Achievements
	Background
	Image Classification
	Cifar-10 and Cifar-100 Dataset

	Properties of Neural Networks
	Neural Networks are Universal Approximators
	Training Neural Networks
	Feed-forward Algorithm
	Objective Function
	Backpropagation Algorithm

	Neural Network Architectures
	Activation Functions
	Sigmoid Function
	ReLu Function

	2D Convolutional Neural Networks (CNNs)
	Batch Normalisation
	Residual Connections

	Network Optimisation
	Integer Quantisation
	Binary Neural Networks (BNNs)
	Network Pruning
	Unstructured Pruning
	Structured Pruning
	Lottery Ticket Hypothesis

	Transfer Learning
	Adaptive Layers

	Literature Review
	Binary Network Architecture
	Straight Through Estimator (STE) BNN
	ReAct Net
	Weight Binarisation
	Activation Function
	Denser Network
	Training Procedure

	Adapter Methods For CNNs
	Serial Adapters
	Unidirectional (parallel) Adapter

	Methodology
	Overview
	Comparing size of adapters to base network
	Base Binary Network
	STE BNN
	ReactNet

	Adapters
	Serial Adapter Design
	Parallel Adapter Design

	Reducing Adapter Parameters
	Grouped Convolution
	Pruning
	Pruning Strategy

	Benchmarks
	Cifar5-5 and Cifar80-20
	Flowers102 and Oxford Pets Dataset

	Training Procedures
	Cifar 5-5 and Cifar 80-20
	Data Augmentation
	Hyperparameters
	Finetuning Procedures
	Cifar 5-5 Experiments
	Cifar 80-20 Experiments

	OxfordPets and Flowers102 Dataset
	Data Augmentation
	Hyperparameters
	Finetuning Procedures

	Summary of Methodology

	Results and Discussion
	Cifar5-5 Benchmark
	Initial Training
	Serial Adapter
	Discussion

	Cifar 80-20
	Serial Adapter
	UDTA Adapter
	Pruning Results
	Grouped Convolution

	Discussion

	Flowers 102 Dataset
	Discussion

	Oxford Pets 102 Dataset

	Future Work and Improvement
	Finetuning Methods
	Adapter Architecture
	LoRA

	Reducing Computing Resources
	Quantization
	Pruning

	On Device Training

	Conclusion
	Learned Practices
	Limitations of study
	Future Directions

	Bibliography
	Appendix
	Base Networks
	STE BNN
	ReAct Resnet18

	Adapters
	Serial Adapters
	Parallel Thinblock Adapters
	STE BNN UDTA Adapter
	ReActUDTA Adapter

	Custom Benchmarks
	Cifar5-5
	Intial Training Dataset
	Target Dataset

	Cifar80-20
	Initial Training Dataset
	Target Dataset

